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Introduction
Technical book writing is a simple job. Pick a topic that appeals to you,
spend some time understanding it, browse the net for some additional
information and then keep writing till the time you do not reach the end.
Easier said than done!

In fact, nothing can be farther from the truth. For one, choosing the right
subject is pretty confusing with so many subjects and technologies taking so
big strides in the recent years. Secondly, none of them is so easy to master
in a few months and thirdly presenting what you have understood in a
simple manner is not everybody’s cup of tea.

I have realized all these facts more emphatically while writing this book,
because I have been writing this book for last 10 years!! It all began with
attempting to write articles that would explain Quick Sort algorithm and
Threaded Binary Trees. Once I had a critical mass of written material, I
thought of compiling it in the form of a book.

I however wanted the book to be a different data structures book. Different
in the sense that, it should go beyond merely explaining how typical data
structures like stacks, queues and linked lists work. I wanted the readers to
experience sorting of an array, traversing of a doubly linked list,
construction of a binary tree, etc.

I had a hell of a time imagining, understanding and programming these
complicated data structures. I wanted that the readers of this book should
not be required to undergo that agony. And today I am satisfied that I have
been able to achieve this through the downloadable DVD. It lets the reader
experience the working of different data structures through carefully
prepared animations. I have pinned my hopes that the readers would
appreciate this approach. The DVD is available at

https://bit.ly/2VjEwiu

I have tried to make this book different in one more way. Instead of merely
learning how to perform different operations on a linked list, I think one can
appreciate it better if one comes to the practical applications of it. There are

https://bit.ly/2VjEwiu


numerous such examples and I have also tried to provide animations for
most of them on the downloadable DVD.

Apart from this I have tried to explain all data structures with examples and
figures. I have also provided exercises at the end of each chapter to hone
your skills.

In the 4th edition I have done a major overhaul of the “Analysis of
Algorithms” chapter, making it more comprehensible by explaining this
difficult topic with numerous examples. I hope the readers would like it.

I have also eliminated those algorithms and programs that are not
commonly used and are of only academic importance. In this edition you
would also find a lot consistency in the style of programming adopted while
implementing different algorithms.

Yashavant Kanetkar



Chapter 01
Analysis of Algorithms

Justifying the means



Why This Chapter Matters?
The dictum “ends justify the means” doesn’t hold good

in Computer Science. Just because we got the right
answer (end) does not mean that the method (means)
that we employed to obtain it was correct. In fact, the

efficiency of obtaining the correct answer is largely
dependent on the method employed to obtain it. Hence

scientific analysis of performance of the method is
very important.



The method of solving a problem is known as an algorithm. More
precisely, an algorithm is a sequence of instructions that act on some

input data to produce desired output in a finite number of steps. An algorithm
must have the following properties:

(a) Input – An algorithm must receive some input data supplied externally.

(b) Output – An algorithm must produce at least one output as the result.

(c) Finiteness – No matter what the input might be, the algorithm must
terminate after a finite number of steps. For example, a procedure which
goes on performing a series of steps infinitely is not an algorithm.

(d) Definiteness – The steps to be performed in the algorithm must be clear
and unambiguous.

(e) Effectiveness – One must be able to perform the steps in the algorithm
without applying any intelligence. For example, the step—Select three
numbers which form a Pythagorean triplet—is not effective.

Why Analyze Algorithms?
Multiple algorithms may exist for solving a given problem. So, to be able to
decide which algorithm to use, we need to analyze algorithms. There can be
multiple yardsticks to determine which algorithm is better than the other.
These include:

(a) Robustness – Is the algorithm robust enough to tackle all types of valid and
invalid inputs.

(b) Maintainability – Is it easy to alter the algorithm as needs change in future.

(c) Scalability – Can the algorithm deal with increase in the number of inputs.

(d) Modularity – Can the algorithm be broken down into smaller sections
(modules).

(e) Security – Can the algorithm deal with malicious attacks.

(f) User-friendliness – Is it easy to use the algorithm.

(g) Performance (efficiency) – Does the algorithm take less time and memory
space when implemented in a program and executed.



Of these, the most popular yardstick used to analyze algorithms is
performance. This is because it is easy to quantify time and space requirements
of an algorithm.

Analysis of Algorithms
One might feel that with faster computers and increasingly cheaper memory
space should we bother about speed and space required by an algorithm
anymore. We should. That is because though the computers have become
faster and memory cheaper, the size of data has also grown exponentially.
Imagine the tasks like searching a popular web page from 30 trillion web
pages, match a sequence in genomic data set, etc. So, unless we chose the right
algorithm to work on such huge datasets, we would end up spending more
time and space while performing these operations.

Moreover, analysis of algorithms gives us a scientific basis to determine which
algorithm should be chosen to solve the problem. Also, on analyzing
algorithms we can communicate to others about the performance or efficiency
of an algorithm using a specific notation (discussed later).

This analysis is done by comparing the time and/or space required for
executing the algorithms. Often, there is a trade-off between time and space. In
this chapter we would analyze algorithms on the basis of time. We would carry
out space-based analysis in later chapters.

While doing time-based analysis of algorithms we do not use conventional
time units like seconds or minutes required for executing the algorithms. There
are two reasons for this.

(a) A worse algorithm may take less time units to execute if we move it to a
faster computer, or use a more efficient programming language to
implement it.

(b) We are interested in relative efficiency of different algorithms rather than
the exact time for one.

While analyzing an algorithm, it is assumed that all operations take same time
units to perform on any computer. So, instead of time units we consider the
number of prominent operations that are carried out by the algorithm. For
example, in a searching algorithm we would try to determine the number of
comparisons that are done to search a value in a list of values. Or in an



algorithm to add two matrices, we might determine the number of arithmetic
operations it performs.

Once we identify the prominent operations in an algorithm, we try to build a
function that relates the number of times these operations are performed to the
size of the input. Once these functions are formed for algorithms under
consideration, we can compare them by comparing the rate at which the
functions grow as the input gets larger.

This growth rate is critical since there are situations where one algorithm
needs fewer operations than the other when the input size is small, but many
more when the input size becomes larger.

The steps involved in analyzing two algorithms are shown in Figure 1.1.

Figure 1-1. Steps involved in analyzing algorithms.

What to Consider, What to Ignore?



It is very important to decide which operations to consider and which
operations to ignore while analyzing an algorithm. For this we must first
identify which is the significant time-consuming operation(s) in the algorithm.
Once that is decided, we should determine which of these operations are
integral to the algorithm and which merely contribute to the overheads. There
are two classes of operations that are typically chosen for the significant
operation—comparison or arithmetic.

For example, in Searching and Sorting algorithms the important task being
done is the comparison of two values. While searching, the comparison is done
to check if the value in a set matches the one, we are looking for, whereas in
sorting the comparison is done to see whether values being compared are out
of order.

The arithmetic operations fall under two groups—additive and multiplicative.
Additive operators include addition, subtraction, increment, and decrement.
Multiplicative operators include multiplication, division, and modulus.

Let us now see an example to determine which operations we should consider
and which we should ignore while analyzing an algorithm. Suppose we wish
to count the number of characters in a file. The algorithm to do this is given
below.

1: Count = 0
2: While (condition – is there a character available for reading from file)
3: do
4: Increment Count by 1
5: Get the next character
6: End while
7: Print Count

If there are 500 characters present in the file, then number of times each step is
performed would be as follows:

1: Initialize count – 1
2: Conditional checks – 500 + 1 (+1 is for last check)
4: Increment Count – 500
5: Get next character – 500
7: Print Count – 1

As can be seen from these numbers, conditional checks, the number of
increments and get next character and are far too many as compared to number



of initialization and printing operations. The number of initialization and
printing operations would remain same for a file of any size and they become a
much smaller percentage of the total as the file size increases. For a large file,
the number of initialization and printing operations would be insignificant as
compared to the number of increments and conditional checks. Thus, while
analyzing this algorithm the initialization and printing operation should be
ignored and only steps 2, 4 and 5 should be considered.

Rates of Growth
While analyzing algorithms, more than the exact number of operations
performed by the algorithm, it is the rate of increase in number of operations
as the size of the problem increases that is of more importance. This rate of
increase is often called the growth rate of an algorithm. In the example in
previous section, the exact number of operations is 1503, whereas, the growth
rate is 3n + 3, where n is the number of characters present in the file. The
growth rate is represented using a function and is then called order of the
function.

Table 1-1 shows growth rate of some common classes of algorithms for a wide
range of input sizes. You can observe that there isn’t a significant difference in
values when the input is small, but once the input value gets large, there are
big differences. Hence, while analyzing algorithms, we must consider what
happens when the size of the input is large, because small input sets can hide
rather dramatic differences.



Table 1-1. Rate of increase in common algorithm classes.

If the growth rate of an algorithm doesn’t change with the size of the input,
then the algorithm is called a constant time algorithm. On similar lines, there
are constant (1), linear (n), logarithmic (log n), log linear (n log n), quadratic
(n2), cubic (n3), polynomial (nc) and exponential (cn) growth rates.

In general, an algorithm whose time (no of operations) / space has a higher
growth rate than another algorithm, will eventually take more time/space as
compared to the other.

We can arrange the growth rates in increasing order as follows:

log log n < log n < n < n log n < n < n2 < n3 < 2n < nn < 22 raised to n

The data in Table 1-1 also illustrates that the faster growing functions increase
at such a rate that they quickly dominate the slower-growing functions. Hence,
if an algorithm’s growth rate is a combination of a two of these classes, we can
safely ignore the slower growing terms. For example, if the growth rate of an
algorithm in n2 + 3n, then as n increases the term n2 will grow much faster
than the term 3n. So, we can safely discard the term 3n. On discarding the
lower order term, what we are left with is called the order of the function or
order of the algorithm whose growth rate the function represents. An algorithm



is considered to be more efficient than another if it has a lower order of
growth.

The above discussion relates to behavior of an algorithm as regards time for
execution. The same discussion can be extended to the space requirements
(memory) of an algorithm. Thus, an algorithm whose space requirement grows
at the rate n2 is considered to be better than the one whose space requirements
grows at the rate n3.

Comparison of Growth Rates
Comparison of some growth rates is obvious. For example, we can intuitively
say n3 grows faster than n2, which grows faster than n. But we may not be so
sure when we compare growth rates of function 2n and n2. In such cases, to
compare the growth rates we need to follow the steps mentioned below.

(a) If anything is common in both functions, cancel it out

(b) Take log of both functions and then compare them

(c) Replace n with some large value of power of 2

(d) Compare the two functions

Note that if functions differ by constant value, then their growth rate is same.

Let us take a few examples to fix our ideas about comparative growth rates.

Example 1-1

Which of the following two functions has a faster growth rate?

f(n) = 2n and g(n) = n2

f(n) g(n)
2n n2

n log2 2 2 log2 n Take log of both functions
n 2 * log2 n
2100 2 * log2 2100 Take n = 2100

2100 2 * 100
2100 200



So, f(n) > g(n), or growth rate of f(n) is more than that of g(n).

Example 1-2

Which of the following two functions has a faster growth rate?

f(n) = 3n and g(n) = 2n

f(n) g(n)
3n 2n

n log2 3 n log2 2 Take log of both sides
log2 3 log2 2

So, f(n) > g(n)

Example 1-3

Which of the following two functions has a faster growth rate?

f(n) = n2 and g(n) = n log2 n

f(n) g(n)
n2 n log2n Cancel out n
n log2 n

So, f(n) > g(n)

Example 1-4

Which of the following two functions has a faster growth rate?

f(n) = n and g(n) = (log2 n)100

f(n) g(n)
n (log2 n)100

log2 n 100 * log2 log2 n Take log of both functions
log2 2128 100 * log2 log2 2128 Substitute n = 2128

128 100 * log2 128
128 100 * log2 27

128 100 * 7



So, f(n) < g(n)

Let us substitute n = 21024

log2 21024 100 * log log 21024

1024 100 * log 1024
1024 100 * log 210

1024 100 * 10
1024 1000

So, f(n) > g(n)

So, after some value of n, f(n) > g(n)

Example 1-5

Which of the two functions has a faster growth rate?

f(n) = nlog n and g(n) = n log n

f(n) g(n)
log n * log n log n + log log n Take log of both functions
log 21024 log 21024 log 21024 + log log 21024 Substitute n = 21024

1024 * 1024 1024 + 10

So, f(n) > g(n)

Asymptotic Notation for Analysis of Algorithms
Growth rate of operations performed (which reflects the time required) or
space required by an algorithm is often called time complexity and space
complexity of an algorithm. Instead of using a naïve way to compare the
time/space complexity of two algorithms, we need a scientific way to do so.
Asymptotic notations offer this scientific way. They are mathematical
notations suggested by Bachmann and Landau to describe limiting behavior of
a function when its argument tends to a particular value or infinity. The word
asymptotic is used in broad sense to mean an approximate value that gets
closer and closer to the truth, when some parameter approaches a limiting
value.

Following Asymptotic notations are commonly used:



(a) Big Oh Notation – It gives an upper bound for a function f(n) to within a
constant factor. It is written as O(f(n)). It is also known as Big O or Big
Omicron notation.

(b) Big Omega Notation – It gives a lower bound for a function f(n) to within a
constant factor. It is written as Ω(f(n)).

(c) Big Theta Notation – It gives bounds for a function f(n) to within a
constant factor. It is written as θ(f(n)).

These notations are discussed below in detail. Refer Figure 1-2 as you read
through this discussion.

Figure 1-2. Asymptotic representation of functions.

Big O Notation
If rate of growth of an algorithm is n2 then using Big O notation, it is said that
time complexity of the algorithm is O(n2). What this means is, in the worst
case this algorithm’s growth rate would be n2. It might be slightly better than
n2 (say n or n log n), but it would never be worse than n2. Thus, Big O gives
the tightest (closest) upper bound for the rate of growth of the algorithm in
question. Though not correct strictly, in common parlance people loosely say
that this algorithm will take n2 time to execute.

Let us now understand Big O in mathematical terms. If rate of growth of an
algorithm is represented by a function f(n) and there is another function g(n) =
n2, then O(g(n)) or O(n2) means

f(n) <= c g(n)

where c is some constant > 0 and n >= n0 >= 1.



Thus, if there are positive constants n0 and c such that at and to the right of n0,
value of f(n) always lies on or below g(n). This is shown in Figure 1-2.

Big O is a very popular way of representing time or space complexity of an
algorithm, as it gives a clear idea of how worse the algorithm would perform,
and no more.

Big Ω Notation
Big Ω gives the tightest (closest) lower bound of growth rate of an algorithm.
Thus, if rate of growth of an algorithm is represented by a function f(n) and
there is another function g(n) = n2, then Ω(g(n)) or Ω(n2) means

f(n) >= c g(n)

where c is some constant > 0 and n >= n0 >= 1.

Thus, if there are positive constants n0 and c such that at and to the right of n0,
value of f(n) always lies on or above g(n). This is shown in Figure 1-1.

Big Ω is not very useful as it indicates that f(n) will grow at a minimum rate of
n2. It might grow even at a worse rate (say n3 or 2n). Since Big Ω is an
indicator of the least rate at which the algorithm complexity will grow, it is not
commonly used. Thus, Big Ω gives the best-case complexity, i.e., it indicates
how much minimum time will it take to execute an algorithm.

Big θ Notation
Big θ gives the tightest lower bound and tightest upper bound of growth rate of
an algorithm. Thus, if rate of growth of an algorithm is represented by a
function f(n) and there is another function g(n) = n2, then θ(g(n)) or θ(n2)
means

c1 g(n) <= f(n) <= c2 g(n)

where c1 and c2 are some constants > 0 and n >= n0 >= 1.

Thus, if there are positive constants n0, c1 and c2 such that at and to the right
of n0, value of f(n) always is bounded by g(n) on either side. Thus, Big θ



indicates that the time complexity of an algorithm will at least be c1.g(n) and
will not be poorer than c2.g(n). This category is usually not of interest to us.

In summary, Big O tells us the maximum time complexity, Big Ω tells us the
minimum time complexity and Big θ tells us both. They are not to be confused
with worst-case input, best-case input and average-case input discussed in the
later section.

Thus, asymptotic notations allow us to compare and rank the growth rare or
order of growth of an algorithm.

Other Notations
Apart from Big O, Big Ω and Big θ, there are two more notations Little o and
Little Ω. Little o notation is used to describe an upper bound that cannot be
tight. In other words, loose upper bound of function f(n). In asymptotic
notation we can say, f(n) < c.g(n).

Little ω notation is used to describe a loose lower bound of f(n). In asymptotic
notation we can say, f(n) > c.g(n).

Since both these notations give loose upper or lower bound, they are not
commonly used to represent the time or space complexity of an algorithm.

Asymptotic Analysis Examples
Let us now see some examples of asymptotic analysis that we learnt above.
We would consider one example of each category— O, Ω and θ.

Example 1-6

If f(n) = 5n + 3 and g(n) = n, can we say f(n) = O(g(n))?

We can say f(n) = O(g(n)) if we can find some c and n0 such that

f(n) <= c g(n), where c > 0, n > n0 >= 1.

Substituting f(n) and g(n) in this expression, we get

5n + 3 <= cn

This equation is satisfied, for c = 6 and for all value of n >= 3.



So, for c = 6, n0 = 3, f(n) = O(g(n))

Note that g(n) can also be n3, n2, 2n which grow faster than n, But, tightest
upper bound is n. So, f(n) = O(n).

Example 1-7

If f(n) = 5n + 3 and g(n) = n, can we say f(n) = Ω(g(n))?

We can say f(n) = Ω(g(n)) if we can find some c and n0 such that

f(n) >= c g(n), c > 0, n > n0, >= 1.

Substituting f(n) and g(n) in this expression, we get

5n + 3 >= cn

This equation is satisfied, for c = 1 and for all values of n >= 1.

So, we can say for c = 1, n0 = 1, f(n) = Ω(g(n))

Note that g(n) can also be log n or log log n, which grow slower than n. But
tightest lower bound is n. So, f(n) = Ω(n).

Example 1-8

If f(n) = 5n + 3 and g(n) = n, can we say f(n) = θ(g(n))?

We can say f(n) = θ(g(n)) if we can find some c1, c2 and n0 such that

c1 g(n) <= f(n) <= c2 g(n), where c1, c2 > 0, n > n0 >= 1.

Substituting f(n) and g(n) in this expression, we get

c1n <= 5n + 3 <= c2n

This inequality is satisfied, for c1 = 1, c2 = 6 and for all value of n >= 3.

So, for c1 = 1, c2 = 6, n0 = 3, f(n) = θ(g(n))

Determining Time Complexity
From the Asymptotic Analysis discussed previously, we know that we would
be interested in Big O as it represents the worst-case time complexity. Let us
determine the time complexity of programmatic implementation of some



algorithms. Note that instead of entire workable programs, we would consider
only functions that implement an algorithm, and that too in pseudo code form
and not as syntactically correct C code.

Example 1-9
fun()
{

int i;
for (i = 1 to n)

printf (“Hello\n”);
}

Here printf() would be executed n times so time complexity is O(n).

Example 1-10
fun()
{

int i, j;
for (i = 1 to n)
{

for (j = 1 to n)
printf (“Hello\n”);

}
}

Here printf() would be executed n2 times so time complexity is O(n2).

Example 1-11
fun(int n)
{

int i = 1;
for (i = 1; i * i <= n; i++)

printf (“Hello\n”);
}

The condition used in the loop i * i <= n, which is same as i <= √n. So
printf() would get executed √n times. So time complexity is O(√n).

Example 1-12
fun (int n)



{
int i = 1, s = 1;
while (s <= n)
{

i++;
s = s + i;
printf (“Hello\n”);

}
}

Here we can’t say that the loop would be executed n times because value of s
is being incremented in steps of i and not in steps of 1. In this function values
of i and s would get incremented as per the following pattern:

i = 1, 2, 3, 4, 5, …, k
s = 1, 3, 6, 10, 15, 21, …

By the time s becomes greater than n, loop would go around k times.

When i = 1, s = sum of first 1 Natural numbers
When i = 2, s = sum of first 2 Natural numbers
When i = 3, s = sum of first 3 Natural numbers
…

When i = k, s = sum of first k Natural numbers.

When loop stops s > n.

This means

k (k + 1) / 2 > n

or (k2 + k) / 2 > n

Ignoring the lower order terms k2 > n

So, number of iterations k will be √n

So, time complexity is O(√n).

Example 1-13
fun (int n)
{

int i, j, k;



for (i = 1; i <= n; i++)
{

for (j = 1; j <= i; j++)
{

for (k = 1; i <= 50; i++)
printf (“Hello\n”);

}
}

}

Let us analyze how many times each loop in this function gets executed.

For i = 1, j loop executes 1 time and k loop executes 50 times.
For i = 2, j loop executes 2 times and k loop executes 2 * 50 times.
For i = 3, j loop executes 3 times and k loop executes 3 * 50 times.
For i = n, j loop executes n times and k loop executes n * 50 times.

So, printf() would get executed

50 + 2 * 50 + 3 * 50 + … + n * 50 times
= 50 * (1 + 2 + 3 + … + n) times
= 50 * n (n + 1) / 2) times

Ignoring the lower order terms and the coefficients, time complexity would be
O(n2).

Example 1-14
fun (int n)
{

int i;
for (i = 1; i < n; i = i * 2)

printf (“Hello\n”);
}

In this function the value of i is incremented as per the following pattern:

i = 1, 2, 4, 8, 16,… n
Or
i = 20, 21, 22, 23, 24, … 2k

When all iterations are over, 2k would be equal to n. So, k would be equal to
log2 n. So printf() would get executed log2 n times. Hence time complexity



would be O(log2 n).

Note that had the incrementation been done using the expression i = i * 3, time
complexity would be O(log3 n). Likewise, had it been done using i = i * 4,
time complexity would be O(log4 n).

Types of Input to Consider During Analysis
Choosing the input to consider when analyzing an algorithm can have a
significant impact on how an algorithm will perform. For example, if the input
list is already sorted, some sorting algorithms will perform very well, but other
sorting algorithms may perform very poorly. The opposite may be true if the
list is randomly arranged instead of sorted.

Hence, multiple input sets must be considered while analyzing an algorithm.
These include the following:

(a) Best Case Input – This represents the input set that allows an algorithm to
perform quickest, i.e., with this input the algorithm takes shortest time to
execute, as it causes the algorithms to do the least amount of work. For
example, for a searching algorithm the best case would be if the value we
are searching for is found in the first location that the search algorithm
checks. As a result, this algorithm would need only one comparison
irrespective of the complexity of the algorithm. No matter how large is the
input, searching in a best case will result in a constant time. Since
possibility of best-case input for an algorithm would usually be very small,
the best-case analysis of an algorithm is often not done.

(b) Worst Case Input – This represents the input set that allows an algorithm to
perform slowest. Worst case is an important analysis because it gives us an
idea of the maximum time an algorithm will ever take. Worst case analysis
requires that we identify the input values that cause an algorithm to do the
most work. For example, for a searching algorithm, the worst case is one
where the value is in the last place we check or is not in the list. This could
involve comparing the key to each list value for a total of N comparisons.

(c) Average Case Input – This represents the input set that allows an algorithm
to deliver an average performance. Average-case analysis is a four-step
process. These steps are as under:



1. Determine the number of different groups into which all possible input
sets can be divided.

2. Determine the probability that the input will come from each of these
groups.

3. Determine how long the algorithm will run for each of these groups. All
of the input in each group should take the same amount of time, and if
they do not, the group must be split into two separate groups.

4. Calculate average case time using the formula:

where,
n = Size of input
m = Number of groups
pi = Probability that the input will be from group i
ti = Time that the algorithm takes for input from group i.

Note that Big O, Big Ω and Big θ, can be computed for all the three types of
input case mentioned above.

Is Asymptotic Analysis Perfect?
Suppose two algorithms have rate of growth represented by functions 100 n
log n and 2 n log n respectively. Ignoring the constants order of growth of
both algorithms would be n log n. So, both algorithms are asymptotically
same. Hence, we can’t judge which one is better.

While doing Asymptotic Analysis we always consider input size n greater than
some constant value n0. But, in reality, we may never supply input bigger than
n0. In such cases, an asymptotically slower algorithm may perform better than
an asymptotically faster algorithm.

From these examples we can conclude that asymptotic analysis is not perfect,
but it still remains the best way available. Hence, it is widely used while
analyzing algorithms.

Types of Algorithms



Though the problems might be very different, it is possible that the algorithms
used to solve them are similar. For example, the two problems—counting
elements in a list and checking whether a value exists in a list are different.
Still the algorithms for both are very similar. Hence algorithms are often
classified as per their characteristics rather than the problem that they are
attempting to solve. Given below is a list of some common types of
algorithms. I do not intend to explain characteristics of these algorithms here.
Some of them are explained in chapters to follow.

(a) Iterative algorithms

(b) Recursive algorithms

(c) Backtracking algorithms

(d) Divide and conquer algorithms

(e) Dynamic programming algorithms

(f) Greedy algorithms

(g) Branch and bound algorithms

(h) Brute force algorithms

(i) Randomized algorithms

Chapter Bullets

Summary of chapter

(a) Algorithm is a method of accomplishing a task in a finite number of steps.

(b) An algorithm must have input, output, finiteness, definiteness and
effectiveness.

(c) Analysis of an algorithm involves determining time requirement or
memory space requirement.

(d) Asymptotic analysis evaluates an algorithm’s performance in terms of
input size. It calculates how time / space increases with input size.



(e) Asymptotic notation describes 3 rates of growth Big Ω, Big O and Big θ.

(f) Usually, Big O analysis of an algorithm is done, as it determines the worst-
case time complexity.

(g) Though Asymptotic Analysis is not perfect, it is still the best way available
to analyze algorithm’s performance.

(h) Time complexity of a function can be found out by determining the number
of times the dominant operation is being performed in the function.

(i) Order of growth of two functions can be compared by taking log of
functions and substituting a large value in place of n.

Check Your Progress

Exercise - Level I

[A] Pick up the correct alternative for each of the following questions:

(a) If algorithm A1 is asymptotically more efficient than algorithm A2, then
which of the following statement is correct?

(1) A1 would be more efficient for all inputs
(2) A1 would be more efficient for all inputs except small inputs
(3) A1 would be more efficient for all inputs except large inputs
(4) A2 would be more efficient for small inputs

(b) The correct increasing order of Asymptotic complexity of 4 functions
given below is

fun1 (n) = 2n

fun2 (n) = n3/2

fun3 (n) = nlog n
fun4 (n) = n^ (log n)

(1) fun3, fun2, fun4, fun1
(2) fun3, fun2, fun1, fun4
(3) fun2, fun3, fun1, fun4
(4) fun2, fun3, fun4, fun1



(c) Four functions fun1(), fun2(), fun3() and fun4() use four different for
loops given below, where n > 0.

for (i = 0; i < n; i++)
for (i = 0; i < n; i += 2)
for (i = 1; i < n; i *= 2)
for (i = n; i > -1; i /= 2)

Which function would be most efficient?

(1) fun1
(2) fun2
(3) fun3
(4) fun4

(d) Which of the following is not O(n2) ?
(1) 125 * n + 12099
(2) n3.14
(3) 310 * n
(4) n3 / √n

(e) Consider the following function fun():

double fun (int n)

{
int i;
double sum;
if (n = = 0)

return 1.0;
else
{

sum = 0.0;
for (i = 0; i < n; i++)

sum += fun (i);
return sum;

}
}

The time complexity of the above function is:

(1) O(1)



(2) O(n)
(3) O(n!)
(4) O(nn)

(f) Consider the following function with n >= m.

int gcd (int n, int m)
{

if (n % m == 0)
return m;

n = n % m;

return gcd (m, n);
}

How many recursive calls are made in the above function?
(1) θ(log n)
(2) Ω(n)
(3) θ(log log n)
(4) θ(sqrt(n))

(g) Consider the following pseudo code. What is the total number of
multiplications to be performed?

D = 2
for i = 1 to n do

for j = i to n do
for k = j + 1 to n do

D = D * 3

(1) Half of the product of the 3 consecutive integers
(2) One-third of the product of the 3 consecutive integers
(3) One-sixth of the product of the 3 consecutive integers
(4) None of the above

[B] Two different procedures are written for a given problem. One has a
computing time given by 2n and that for the other is n3. Specify the range
of n for which each would be suitable.

[C] Compare the two functions n2 and 2n / 4 for various values for n.
Determine when the second becomes larger than the first.



[D] Which of the following function grow faster?

i. √n or log n ?
ii. nlog n or log nn ?

Prove your claim.

Sharpen Your Skills

Exercise - Level II

[E] Determine the time complexity of the following algorithms:

(a) fun( int n )
{

int old, new, term, n ;
old = new = 1 ;
printf ( “%d %d ”, old, new ) ;
for ( i = 1 ; i <= n ; i++ )
{

term = old + new ;
printf ( “%d ”, term ) ;
old = new ;
new = term ;

}
}

(b) fun ( int n )
{

for ( i = 1 ; i<= n ; i++ )
{

for ( j = 1 ; j <= i ; j++ )
{

for ( k = 1 ; k <= j ; k++ )
printf ( “Hello\n” ) ;

}
}



}

(c) fun ( int n )
{

i = 1 ;
while ( i <= n )
{

x++ ;
i++ ;

}
}

(d) int fun ( int n )
{

int i, j, count = 0 ;
for ( i = n ; i > 0 ; i /= 2 )
{

for ( j = 0 ; j < i ; j++ )
count = count + 1 ;

}
return count ;

}

(e) int fun ( int n )
{

int i, j, count = 0 ;
for ( i = 0 ; i < n ; i++ )
{

for ( j = i ; j > 0 ; j– )
count = count + 1 ;

}
return count ;

}

(f) fun ( int n )
{
int i, j = 0 ;

for ( i = 0 ; i < n ; ++i )
{

while ( j < n )



j++ ;
}

}

(g) int fun ( int n )
{

int i, j, k = 0 ;
for ( i = n / 2 ; i <= n ; i++ )
{

for ( j = 2 ; j <= n ; j = j * 2 )
k = k + n/2 ;

}
return k ;

}

(h) fun ( int n )
{

int j ;
j = 1 ;
while ( j <= n )
{

j = j * 2 ;
printf ( “Hello\n” ) ;

}
}

(i) fun ( int n )
{

int i, j ;
for ( i = n, j = 0 ; i > 0 ; i /= 2, j += i )

printf ( “Hello\n” ) ;
}

(j) fun ( int n )
{

int i, j, k ;
for ( i = 1 ; i <= n ; i++ )
for ( j = i ; j <= n ; j++ )

for ( k = j + 1 ; k <= n ; k++ )
printf ( “Hello\n” ) ;



}

(k) fun ( int n )
{

int i, j, k ;
for ( i = 1 ; i <= n ; i++ )
{

for ( j = 1 ; j <= i * i ; j++ )
{

for ( k = 1 ; i <= n/2 ; i++ )
printf ( “Hello\n” ) ;

}
}

}

(l) fun ( int n )
{

int i, j, k ;
for ( i = n/2 ; i <= n ; i++ )
{

for ( j = 1 ; j <= n/2 ; j++ )
{

for ( k = 1 ; i <= n ; k = k*2 )
printf ( “Hello\n” ) ;

}
}

}

(m) fun ( int n )
{

int i, j, k ;
for ( i = n/2 ; i <= n ; i++ )
{

for ( j = 1 ; j <= n ; j = 2 * j )
{

for ( k = 1 ; i <= n ; k = k*2 )
printf ( “Hello\n” ) ;

}
}

}



(n) fun( int n )
{

// Assume n >= 2
int i, j, k ;
while ( n > 1 )

n = n /2 ;
}

(o) fun ( int n )
{

int i, j ;
for ( i = 1 ; i <= n ; i++ )
{

for ( j = 1 ; j <= n ; j = j + i )
printf ( “Hello\n” ) ;

}
}

(p) fun( )
{

int i, j, n, k ;
n = (22)k ;
for ( i = 1 ; i <= n ; i++ )
{

j = 2 ;
while ( j <= n )
{

j = j * j ;
printf ( “Hello\n” ) ;

}
}

[F] Arrange the following functions in ascending order of their growth rate:

fun1 = 2n

fun2 = n3/2

fun3 = n log n
fun4 = n log n

(h) Arrange the following functions in ascending order of their growth rate:



fun1 = n0.999999log n
fun2 = 10000000n
fun3 = 1.000001n

fun4 = n^2

(i) Arrange the following functions in increasing asymptotic order:

fun1 = n1/3

fun2 = en

fun3 = n7/4

fun4 = n log9n
fun5 = 1.0000001n

[G] Determine which of the following function is faster:

f (n) = n3 for 0 < n < 10000
= n2 for n >= 10000

g (n) = n for 0 < n < 100
= n3 for n > 100

[H] Match the following pairs:

A.    Constant time complexity 1.    O(n!)
B.    Exponential time complexity 2.    O(1)
C.    Slowest time O(n!) 3.    O(2n)
D.    Polynomial time complexity 4.    O(nc)
E    Big O for 5log n 5.    O(n2)
F.    Big O for (n logn + n2)(n3 + 2) 6.    O(n2log n)
G.    Big-O for 2 log(n!) + (n2 + 1)logn 7.    O(n)

Coding Interview Questions

Exercise Level III



For each of the following pairs of functions f(n) and g(n), either f(n) = O(g(n))
or g(n) = O(f(n), but not both. Determine which the case is for each of the
following pairs:

(a) f(n) = (n2 - n)/2, g(n) = 6n

(b) f(n) = n + 2 √n g(n) = n2

(c) f(n) = n + n log n, g(n) = n√n

(d) f(n) = n2 +3n + 4, g(n) = n3

(e) f(n) = n log n, g(n) = n √n / 2

(f) f(n) = n + log n, g(n) =√n

(g) f(n) = 2(log n)2, g(n) = log n+1

(h) f(n) = 4n log n+n, g(n) = (n2-n)/2

Case Scenario Exercise

Growth rates

List the following functions from highest to lowest order. If any are of the
same order, circle them on your list.

2n log log n n3 + log n log n n2 + 5n3

2n-1 n2 n3 n log n (log n)2

√n 6 n! n (3/2)n



Chapter 02
Arrays

Friends Are Friends



Why This Chapter Matters?
Array is one data structure that has been used more

than any other. Arrays are simple yet reliable and are
used in more situations than you can count. Yet they

have problems that are typical to them, which at
times lead to serious performance issues. They are

like old friends. You accept and live with their
qualities—good as well as bad.



D ata Structure is a way of organizing data in such a way that we can
perform operations on the data in an effective way. Same data can be

stored in different data structures. Each data structure has its own benefits
and limitations. A data structure is not related with any specific language.
All data structures can be implemented through languages like C, C++,
Java, C#, Python, etc. In this book we would be using C language to
implement various data structures.

Data structures are classified into two categories—linear and nonlinear. The
elements in a linear data structure form a sequence, whereas elements in a
nonlinear data structure do not.

There are two ways of representing linear data structures in memory—
Array based lists (simply called arrays) and Linked Lists. In array the linear
relationship between elements is established by storing its elements in
sequential memory locations. In linked list the linear relationship is
established through pointers or links. In a linked list each node contains the
data and the address of the next node. Figure 2-1(a) and Figure 2-1(b) show
the representation of an array and a linked list.

Figure 2-1. Array and Linked list.



Arrays are useful when the number of elements to be stored is fixed. They
are easy to traverse, search and sort. On the other hand, linked lists are
useful when number of data items in the collection is likely to vary. Linked
lists are difficult to maintain as compared to an array. We would discuss
linked lists in more detail in Chapter 3.

Arrays
An Array is a finite collection of similar elements stored in adjacent
memory locations. An array containing n number of elements is referenced
using an index that varies from 0 to n - 1. For example, the elements of an
array arr[n] containing n elements are denoted by arr[0], arr[1], arr[2],
…, arr[n-1], where 0 is the lower bound of the array, n - 1 is the upper
bound and of the array and 0, 1, 2, etc. are indices of the array. A sample
arrangement of array elements is shown in Figure 2-2.

Figure 2-2. Elements in an array with their indices.

There are several operations that can be performed on an array. These
operations are listed in Table 2-1.



Table 2-1. Operations performed on arrays.

Let us now see a program that shows how to perform these operations on an
array.

Honest Solid Code

Program 2-1. Implementation of various array operations

#include <iostream>
using namespace std ;
const int MAX = 5 ;

class array
{

private :
int arr[ MAX ] ;

public :
void insert ( int pos, int num ) ;
void del ( int pos ) ;
void reverse( ) ;
void display( ) ;



void search ( int num ) ;
} ;

// inserts an element num at given position pos
void array :: insert ( int pos, int num )
{

int i ;
// shift elements to right
for ( i = MAX - 1 ; i >= pos ; i– )

arr[ i ] = arr[ i - 1 ] ;
arr[ i ] = num ;

}

// deletes an element from the given position pos
void array :: del ( int pos )
{

int i ;
// skip to the desired position
for ( i = pos ; i < MAX ; i++ )

arr[ i - 1 ] = arr[ i ] ;
arr[ i - 1 ] = 0 ;

}

// reverses the entire array
void array :: reverse( )
{

for ( int i = 0 ; i < MAX / 2 ; i++ )
{

int temp = arr[ i ] ;
arr[ i ] = arr[ MAX - 1 - i ] ;
arr[ MAX - 1 - i ] = temp ;

}
}

// searches array for a given element num
void array :: search ( int num )
{

int i ;
for ( i = 0 ; i < MAX ; i++ )



{
if ( arr[ i ] == num )
{

cout << endl << “Element ” << num
<< “ is at ” << ( i + 1) << “th position” ;

return ;
}

}
if ( i == MAX )

cout << endl << “Element ” << num << “ is absent” ;
}

// displays the contents of an array
void array :: display( )
{

cout << endl ;
for ( int i = 0 ; i < MAX ; i++ )

cout << arr[ i ] << “ ” ;
}

int main( )
{

array a ;
a.insert ( 1,11 ) ;
a.insert ( 2,12 ) ;
a.insert ( 3,13 ) ;
a.insert ( 4,14 ) ;
a.insert ( 5,15 ) ;
cout << endl << “Elements of Array: ” ;
a.display( ) ;
a.del ( 5 ) ;
a.del ( 2 ) ;
cout << endl << “After deletion: ” ;
a.display( ) ;
a.insert ( 2, 222 ) ;
a.insert ( 5, 555 ) ;
cout << endl << “After insertion: ” ;
a.display( ) ;



a.reverse( ) ;
cout << endl << “After reversing: ” ;
a.display( ) ;
a.search ( 222 ) ;
a.search ( 666 ) ;
return 0 ;

}

Output:

Elements of Array:
11   12   13   14   15
After deletion:
11   13   14   0   0
After insertion:
11   222   13   14   555
After reversing:
555   14   13   222   11
Element 222 is at 4th position
Element 666 is absent

In this program we have designed a class called array. It contains an array
arr of 5 ints. The functions like insert(), del(), display(), reverse() and
search() access and manipulate the array arr.

The insert() function takes two arguments, the position pos at which the
new number has to be inserted and the number num that has to be inserted.
In this function, firstly through a loop, we have shifted the numbers from
the specified position, one place to the right of their existing position. Then
we have placed the number num at position pos.

The del() function deletes the element present at the given position pos. For
this we have shifted the numbers placed after the position from where the
number is to be deleted, one place to the left of their existing positions. The
number at position pos is then overwritten with 0.

In reverse() function we have reversed the entire array by swapping the
elements arr[0] with arr[4], arr[1] with arr[3] and so on. Note that
swapping should continue for MAX / 2 times only, irrespective of whether
MAX is odd or even.



The search() function searches the array for the specified number. For this
the comparison is carried out until either the list is exhausted or a match is
found. If the match is not found then the function displays the relevant
message.

In the display() function, the entire array is traversed to display the
elements of the array.

Two-Dimensional Arrays
A 2-dimensional array is a collection of elements placed in m rows and n
columns. The syntax used to declare a 2-D array includes two subscripts, of
which one specifies the number of rows and the other specifies the number
of columns of an array. These two subscripts are used to reference an
element in an array. For example, arr[3][4] is a 2-D array containing 3 rows
and 4 columns and arr[0][2] is an element placed at 0th row and 2nd column
in the array. The two-dimensional array is also called a matrix. The
pictorial representation of a matrix is shown in Figure 2-3.

Figure 2-3. Representation of a 2-D array.

Row Major and Column Major Arrangement
Rows and columns of a matrix are only a matter of imagination. When a
matrix gets stored in memory all its elements are stored linearly since
computer’s memory can only be viewed as consecutive units of memory
locations. This leads to two possible arrangements of elements in memory



—Row Major Arrangement and Column Major Arrangement. Figure 2-4
illustrates these two possible arrangements for a 2-D array.

Figure 2-4. Possible arrangements of 2-D array.

Since the array elements are stored in adjacent memory locations, we can
access any element of the array once we know the base address (starting
address) of the array and number of rows and columns present in the array.

For example, if the base address of the array shown in Figure 2-4 is 502 and
we wish to refer the element 121, then the calculation involved would be as
follows:

Row Major Arrangement



Element 121 is present at a[1][3]. Hence location of 121 would be = 502 +
1 * 4 + 3 = 502 + 7 = 530

In general, for an array a[m][n] the address of element a[i][j] would be
Base address + i * n + j.

Column Major Arrangement
Element 121 is present at a[1][3]. Hence location of 121 would be = 502 +
3 * 3 + 1 = 502 + 10 = 542

In general, for an array a[m][n] the address of element a[i][j] would be
Base address + j * m + i. Note that C language permits only Row Major
Arrangement.

Common Matrix Operations
Common matrix operations are addition, multiplication and transposition.
The following program demonstrates these different matrix operations.

Honest Solid Code

Program 2-2. Implementation of common matrix operations

#include <iostream>
using namespace std ;
const int MAX = 3 ;

class matrix
{

private :
int mat[ MAX ][ MAX ] ;

public :
matrix( ) ;
void create( ) ;
void display( ) ;



void matadd ( matrix &m1, matrix &m2 ) ;
void matmul ( matrix &m1, matrix &m2 ) ;
void transpose ( matrix &m1 ) ;

} ;

// initializes the matrix mat with 0
matrix :: matrix( )
{

for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
mat[ i ][ j ] = 0 ;

}
}

// creates matrix mat
void matrix :: create( )
{

int n ;
for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
{

cout << endl << “Enter the element: ” ;
cin >> n ;
mat[ i ][ j ] = n ;

}
}

}

// displays the contents of matrix
void matrix :: display( )
{

for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
cout << mat[ i ][ j ] << “ ” ;

cout << endl ;



}
}

// adds two matrices m1 and m2
void matrix :: matadd ( matrix &m1, matrix &m2 )
{

for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
mat[ i ][ j ] = m1.mat[ i ][ j ] + m2.mat[ i ][ j ] ;

}
}

// multiplies two matrices m1 and m2
void matrix :: matmul ( matrix &m1, matrix &m2 )
{

for ( int k = 0 ; k < MAX ; k++ )
{

for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
mat[ k ][ i ] += m1.mat[ k ][ j ] * m2.mat[ j ][ i ] ;

}
}

}

// obtains transpose of matrix m1
void matrix :: transpose ( matrix &m1 )
{

for ( int i = 0 ; i < MAX ; i++ )
{

for ( int j = 0 ; j < MAX ; j++ )
mat[ i ][ j ] = m1.mat[ j ][ i ] ;

}
}

int main( )
{

matrix mat1 ;



cout << endl << “Enter elements for first array:” << endl ;
mat1.create( ) ;

matrix mat2 ;
cout << endl << “Enter elements for second array:” << endl ;
mat2.create( ) ;

cout << endl << “First Array:” << endl ;
mat1.display( ) ;
cout << endl << “Second Array:” << endl ;
mat2.display( ) ;

matrix mat3 ;
mat3.matadd ( mat1, mat2 ) ;
cout << endl << “After Addition:” << endl ;
mat3.display( ) ;

matrix mat4 ;
mat4.matmul ( mat1, mat2 ) ;
cout << endl << “After Multiplication:” << endl ;
mat4.display( ) ;

matrix mat5 ;
mat5.transpose ( mat1 ) ;
cout << endl << “Transpose of first matrix:” << endl ;
mat5.display( ) ;
return 0 ;

}

Output:

Enter elements for first array:
Enter the element: 1
Enter the element: 2
Enter the element: 3
Enter the element: 2
Enter the element: 1
Enter the element: 4
Enter the element: 4
Enter the element: 3



Enter the element: 2

Enter elements for second array:
Enter the element: 3
Enter the element: 2
Enter the element: 3
Enter the element: 4
Enter the element: 3
Enter the element: 2
Enter the element: 1
Enter the element: 3
Enter the element: 1

First Array:
1    2    3
2    1    4
4    3    2
Second Array:
3    2    3
4    3    2
1    3    1
After Addition:
4    4    6
6    4    6
5    6    3
After Multiplication:
14    17    10
14    19    12
26    23    20
Transpose of first matrix:
1    2    4
2    1    3
3    4    2

In this program we have designed a class called matrix. This class contains
functions that perform different matrix operations like addition,
multiplication, transposition, etc. The create() function creates a 2-D array



containing 3 rows and 3 columns. The display() function displays the
elements of the matrix.

The function matadd() adds the elements of two matrices mat1.mat and
mat2.mat. The result is stored in matrix mat of the object mat3, that has
called the matadd() function. Similarly, the function matmul() multiplies
the elements of matrix mat1.mat with the elements of matrix mat2.mat
and stores the result into the matrix mat of the object mat4 that called the
function.

The function transpose(), transposes a matrix. A transpose of a matrix is
obtained by interchanging the rows with corresponding columns of a given
matrix. The transposed matrix is stored in matrix mat of the object mat5.

Multidimensional Arrays
A 3-dimensional array can be thought of as an array of arrays of arrays.
Figure 2-5 shows a 3-D array, which is a collection of three 2-D arrays each
containing 4 rows and 2 columns.

Figure 2-5. Representation of a 3-D array.

This array can be defined as:

int a[3][4][2] = {
{{2, 8}, {0, 6}, {4, 7}, {1, 5}},
{{3, 2}, {8, 6}, {1, 6}, {4, 5}},



{{3, 9}, {1, 8}, {6, 5}, {4, 0}}
};

The outer array has three elements, each of which is a 2D array, which in
turn holds four 1D arrays containing two integers each. Note that the
arrangement shown in Figure 2-5 is only conceptually true. In memory the
same array elements are stored linearly as shown in Figure 2-6.

Figure 2-6. Memory representation of a 3-D array.

As stated earlier, C permits only a Row Major arrangement for multi-
dimensional arrays. Let us determine the location of element 9 in the array
shown in Figure 2-6. Element 9 is present at a[2][0][1] indicating that it is
present in 0th row, 1st column of 2nd 2-D array. Hence address of 9 would be

402 + 2 * 4 * 2 + 0 * 2 + 1 = 402 + 17 = 470

For any 3-D array a[x][y][z] arranged in Row Major fashion the element
a[i][j][k] can be accessed using Base address + i * y * z + j * z + k.

The formula for Column Major arrangement would be Base address + i * y
* z + k * y + j.

On similar lines for a 4-D array a[w][x][y][z] the element a[i][j][k][l] can
be accessed using following formulae:

Row Major : Base address + i * x * y * z + j * y * z + k * z + l

Column Major : Base address + i * x * y * z + j * y * z + l * y + k

Arrays and Polynomials
Polynomials like 5X4 + 2X3 + 7X2 + 10X - 8 can be maintained using an
array. The simplest way to represent a polynomial of degree “n” is to store



the coefficient of (n + 1) terms of a polynomial in an array. For this each
element of the array should consist of two values—coefficient and
exponent. While storing the polynomial it is assumed that the exponent of
each successive term is less than that of the previous term. Once we build
an array to represent a polynomial, we can use it to perform common
polynomial operations like addition and multiplication. The following
program demonstrates how we can store polynomials and add them.

Honest Solid Code

Program 2-3. Implementation of polynomial addition
#include <iostream>
using namespace std;
const int MAX = 10;

class poly
{

private :
struct term
{

int coeff;
int exp;

} t[MAX];
int noofterms;

public :
poly();
void polyappend (int c, int e);
void polyadd (poly &p1, poly &p2);
void display();

};

// initializes data members of class poly
poly :: poly()
{

noofterms = 0;



for (int i = 0; i < MAX; i++)
{

t[i].coeff = 0;
t[i].exp = 0;

}
}

// adds the term of polynomial to the array t
void poly :: polyappend (int c, int e)
{

t[noofterms].coeff = c;
t[noofterms].exp = e;
noofterms++;

}

// displays the polynomial equation
void poly :: display()
{

int flag = 0;
for (int i = 0; i < noofterms; i++)
{

if (t[i].exp != 0)
cout << t[i].coeff << “x^” << t[i].exp << “ + ”;

else
{

cout << t[i].coeff;
flag = 1;

}
}
if (!flag)

cout << “\b\b ”;
}

// adds two polynomials p1 and p2
void poly :: polyadd (poly& p1, poly& p2)
{

int c = p1.noofterms > p2.noofterms ? p1.noofterms : p2.noofterms;

for (int i = 0, j = 0; i <= c; noofterms++)



{
if (p1.t[i].coeff == 0 && p2.t[j].coeff == 0)

break;
if (p1.t[i].exp >= p2.t[j].exp)
{

if (p1.t[i].exp == p2.t[j].exp)
{

t[noofterms].coeff = p1.t[i].coeff + p2.t[j].coeff;
t[noofterms].exp = p1.t[i].exp;
i++;
j++;

}
else
{

t[noofterms].coeff = p1.t[i].coeff;
t[noofterms].exp = p1.t[i].exp;
i++;

}
}
else
{

t[noofterms].coeff = p2.t[j].coeff;
t[noofterms].exp = p2.t[j].exp;
j++;

}
}

}

int main()
{

poly p1;

p1.polyappend (1, 7);
p1.polyappend (2, 6);
p1.polyappend (3, 5);
p1.polyappend (4, 4);
p1.polyappend (5, 2);



poly p2;
p2.polyappend (1, 4);
p2.polyappend (1, 3);
p2.polyappend (1, 2);
p2.polyappend (1, 1);
p2.polyappend (2, 0);

poly p3;
p3.polyadd (p1, p2);

cout << endl << “First polynomial:” << endl ;
p1.display();

cout << endl << “Second polynomial:” << endl;
p2.display();

cout << endl << “Resultant polynomial:” << endl;
p3.display();

return 0;
}

Output:

First polynomial:
1x^7 + 2x^6 + 3x^5 + 4x^4 + 5x^2 Second polynomial:
1x^4 + 1x^3 + 1x^2 + 1x^1 + 2 Resultant polynomial:
1x^7 + 2x^6 + 3x^5 + 5x^4 + 1x^3 + 6x^2 + 1x^1 + 2

In this program, the class poly contains a structure called term. This
structure stores the coefficient and exponent of the term of a polynomial.
The data member noofterms stores the total number of terms that an object
of poly class is supposed to hold. The function polyappend() adds the term
of a polynomial to the array t. The function polyadd() adds the polynomials
represented by the two objects p1 and p2. The function display() displays
the polynomial.

In main(), we have called the function polyappend() several times to build
the two polynomials which are represented by the objects p1 and p2. Next,
the function polyadd() is called through the object p3 to carry out the
addition of two polynomials. In this function, arrays representing the two



polynomials are traversed. While traversing, the polynomials are compared
on a term-by-term basis. If the exponents of the two terms being compared
are equal then their coefficients are added and the result is stored in the
third polynomial. If the exponents of two terms are not equal then the term
with the bigger exponent is added to the third polynomial. If the term with
an exponent is present in one of the objects of poly, then that term is added
as it is to the third polynomial.

Lastly, the terms of the resulting polynomial are displayed using the
function display().

Multiplication of Polynomials
Let us now see a program that carries out multiplication of two
polynomials.

Honest Solid Code

Program 2-4. Implementation of polynomial multiplication

#include <iostream>
using namespace std;
const int MAX = 10;

class poly
{

private :
struct term
{

int coeff;
int exp;

} t[MAX];
int noofterms;

public :
poly();



void polyappend (int c, int e);
void polyadd (poly &p1, poly &p2);
void polymul (poly &p1, poly &p2);
void display();

};

// initializes data members of class poly
poly :: poly()
{

noofterms = 0;
for (int i = 0; i < MAX; i++)
{

t[i].coeff = 0;
t[i].exp = 0;

}
}

// adds the term of polynomial to the array t
void poly :: polyappend (int c, int e)
{

t[noofterms].coeff = c;
t[noofterms].exp = e;
noofterms++;

}

// displays the polynomial equation
void poly :: display()
{

int flag = 0;
for (int i = 0; i < noofterms; i++)
{

if (t[i].exp != 0)
cout << t[i].coeff << “x^” << t[i].exp << “ + ”;

else
{

cout << t[i].coeff;
flag = 1;

}



}
if (!flag)

cout << “\b\b ”;
}

// add two polynomials p1 and p2
void poly :: polyadd (poly &p1, poly &p2)
{

int coeff, exp;
poly p;

int c = p1.noofterms;
int d = p2.noofterms;

for (int i = 0, j = 0; i <= c || j <= d;)
{

if (p1.t[i].coeff == 0 && p2.t[j].coeff == 0)
break;

if (p1.t[i].exp >= p2.t[j].exp)
{

if (p1.t[i].exp == p2.t[j].exp)
{

coeff = p1.t[i].coeff + p2.t[j].coeff;
exp = p1.t[i].exp;
i++;
j++;

}
else
{

coeff = p1.t[i].coeff;
exp = p1.t[i].exp;
i++;

}
}
else
{

coeff = p2.t[j].coeff;
exp = p2.t[j].exp;



j++;
}
p.polyappend (coeff, exp);

}
*this = p;

}

// multiply two polynomials p1 and p2
void poly :: polymul (poly &p1, poly &p2)
{

int coeff, exp;
poly t1, t2;

if (p1.noofterms != 0 && p2.noofterms != 0)
{

for (int i = 0; i < p1.noofterms; i++)
{

poly p;
for (int j = 0; j < p2.noofterms; j++)
{

coeff = p1.t[i].coeff * p2.t[j].coeff;
exp = p1.t[i].exp + p2.t[j].exp;
p.polyappend (coeff, exp);

}

if (i != 0)
{

t2.polyadd (t1, p);
t1 = t2;

}
else

t1 = p;
}
*this = t2;

}
}

int main()
{



poly p1;
p1.polyappend (1, 4);
p1.polyappend (2, 3);
p1.polyappend (2, 2);
p1.polyappend (2, 1);

poly p2;
p2.polyappend (2, 3);
p2.polyappend (3, 2);
p2.polyappend (4, 1);

poly p3;
p3.polymul(p1, p2);

cout << endl << “First polynomial: ” << endl;
p1.display();
cout << endl << “Second polynomial: ” << endl;
p2.display();
cout << endl << “Resultant polynomial: ” << endl;
p3.display();

return 0;
}

Output:

First polynomial:
1x^4 + 2x^3 + 2x^2 + 2x^1 Second polynomial:
2x^3 + 3x^2 + 4x^1 Resultant polynomial:
2x^7 + 7x^6 + 14x^5 + 18x^4 + 14x^3 + 8x^2

To carry out multiplication of two given polynomial equations, the poly
class contains one more function polymul(). As done in previous program,
here too we have called polyappend() function several times to build the
two polynomials which are represented by the objects p1 and p2. Next the
function polymul() is called through the object p3 to carry out the
multiplication of two polynomials.

In polymul() function, first we have checked if the two objects p1 and p2
are non-empty. If they are not, then the control goes in a pair of for loops.
Here each term of first polynomial contained in p1 is multiplied with every



term of second polynomial contained in p2. While doing so, we have called
polyappend() to add the terms to p. The first resultant polynomial equation
is stored in temporary object t1 of poly class. There onwards the function
polyadd() is called to add the resulting polynomial equations.

Lastly, the terms of the resulting polynomial are displayed using the
function display().

Chapter Bullets

Summary of chapter

(a) Array is a collection of similar elements stored in adjacent memory
locations.

(b) Arrays cannot grow or shrink dynamically. Hence, they are useful in
situations where number of elements stored in it is fixed.

(c) Common array operations include traversal, searching, sorting,
insertion, deletion, merging and reversal.

(d) Two-dimensional arrays can be arranged in memory either in row-major
or column-major fashion.

(e) All matrix operations like transpose, addition, multiplication can be
implemented using two-dimensional arrays.

(f) Array of structures can be used to store a polynomial and to perform
polynomial operations like addition and multiplication.

Check Your Progress

Exercise - Level I



[A] Fill in the blanks:

(a) A data structure is said to be____if its elements form a sequence.

(b) An Array is a collection of____elements stored in____memory
locations.

(c) Index of an array containing n elements varies from____to____.

(d) A 2-D array is also called____.

[B] Pick up the correct alternative for each of the following questions:

(a) To traverse an array means
(1) To process each element in an array
(2) To delete an element from an array
(3) To insert an element into an array
(4) To combine two arrays into a single array

(b) A program P reads in 500 integers in the range [0..100] representing the
scores of 500 students. It then prints the frequency of each score above
50. What would be the best way for P to store the frequencies?

(1) An array of 50 numbers
(2) An array of 100 numbers
(3) An array of 500 numbers
(4) A dynamically allocated array of 550 numbers

(c) Which of the following operations is not O(1) for an array of sorted
data. You may assume that array elements are distinct.

(1) Find the ith largest element
(2) Delete an element
(3) Find the ith smallest element
(4) All of the above

Sharpen Your Skills

Exercise - Level II



[C] Answer the following:

(a) Find the location of the element a[1][2][2][1] from a 4-D integer array
a[4][3][4][3] if the base address of the array is 1002.

(b) Design a data structure for a banking system where the maximum
number of clients is 150. Information to be stored about clients— name,
address, account no., balance, status as Low/Medium/High depending
on balance.

(c) Design a data structure for Income Tax department to hold information
for maximum 200 persons. Information to be stored about persons—
Income Tax no., tax amount, name, address, whether tax paid or not for
previous year, group as High/Low depending on amount of tax to be
paid and category which would vary from 1 to 10.

[D] Write programs for the following:

(a) Write a program to find out the maximum and the second maximum
number from an array of integers.

(b) Build an array called chess to represent a chessboard and write a
function that would be capable of displaying position of each coin on
the chessboard.

(c) There are two arrays A and B. A contains 25 elements, whereas, B
contains 30 elements. Write a function to create an array C that contains
only those elements that are common to A and B.

Coding Interview Questions

Exercise Level III

(a) The Mode of an array of numbers is the number m in the array that is
repeated most frequently. If more than one number is repeated with
equal maximal frequencies, there is no mode. Write a program that
accepts an array of numbers and returns the mode or an indication that
the mode does not exist.



(b) Write a program to delete duplicate elements from an array of 20
integers.

(c) A square matrix is symmetric if for all values of i and j a[i][j] = a[j][i].
Write a program, which verifies whether a given 5 x 5 matrix is
symmetric, or not.

Case Scenario Exercise

Orthogonal Matrix

A square matrix is said to be Orthogonal if the matrix obtained by
multiplying the matrix with its transpose is an identity matrix. In other
words, if A is a matrix and T is its transpose, then matrix B obtained by
multiplying A with T is called orthogonal if it is an identity matrix. An
identity matrix is a square matrix in which the elements in the leading
diagonal are 1. Write a program that receives a square matrix and
determines whether it is Orthogonal or not.

Orthogonal matrices have applications in field of numerical linear algebra.

Case Scenario Exercise

Longest increasing sub-sequence

One of the interesting problems in Computer Science is to find the longest
increasing subsequence in a given sequence. The subsequence should be as
long as possible and its elements must be in ascending order. The
subsequence elements need not be in adjacent locations and the elements
need not be unique.

For example, in the following sequence



0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

the longest increasing subsequence is

0, 2, 6, 9, 11, 15.

This subsequence has length six; the input sequence has no seven-member
increasing subsequences. The longest increasing subsequence in this
example is not unique. 0, 4, 6, 9, 11, 15 or 0, 4, 6, 9, 13, 15 are other
increasing subsequences of equal length in the same input sequence.

Write a program to obtain the longest increasing subsequence in a given
sequence.

Longest increasing subsequences have applications in fields of random
matrix theory, representation theory, and physics.



Chapter 03
Linked Lists

Stay connected



Why This Chapter Matters?
United we stand, divided we fall! More united and

connected we are, more is the flexibility and
scalability. Same is true with linked lists. Linked lists

are used at numerous places in Computer Science.
The flexibility and performance they offer is worth

the pain of learning them.



For storing similar data in memory we can use either an array or a
linked list. Arrays are simple to understand and elements of an array

are easily accessible. But arrays suffer from the following limitations:

- Arrays have a fixed dimension. Once the size of an array is decided it
cannot be increased or decreased during execution.

- Insertion of a new element in an array is tedious because during insertion
each element after the specified position has to be shifted one position to
the right.

- Deletion of an existing element in an array is inefficient because during
deletion each element after the specified position has to be shifted one
position to the left.

Linked list overcomes all these disadvantages. A linked list can grow and
shrink in size during its lifetime. Thus, there is no maximum size of a
linked list. Also, unlike arrays, while inserting or deleting elements in a
linked list shifting of existing elements is not required.

What is a Linked List?
While the elements of an array occupy contiguous memory locations, those
of a linked list are not constrained to be stored in adjacent locations. The
order of the elements is maintained by explicit links between them. For
instance, the marks obtained by different students can be stored in a linked
list as shown in Figure 3-1.

Figure 3-1. Linked list.

Observe that the linked list is a collection of elements called nodes, each of
which stores two items of information—an element of the list and a link. In



Figure 3-1, the data part of each node consists of the marks obtained by a
student and the link part contains address of the next node. Thus, the link
part is a pointer to the next node. Hence it is shown using an arrow. The
NULL (N) in the last node indicates that it is the last node in the list.

Operations on Linked List
Several operations can be performed on linked lists. This includes building
a linked list by adding new node (at the beginning, at the end or in the
middle of the linked list), deleting a node, display contents of all nodes, etc.
The following program shows how to implement these operations. Go
through the program carefully, a step at a time to understand the working of
these operations.

Honest Solid Code

Program 3-1. Implementation of various linked list operations

#include <iostream>
using namespace std;

class linklist
{

private :
// structure containing a data part and link part
struct node
{

int data;
node * link;

} *p;

public :
linklist();
void append (int num);
void addatbeg (int num);
void addafter (int loc, int num);



void display();
int count();
void del (int num);
~linklist();

};

// initializes data member
linklist :: linklist()
{

p = NULL;
}

// adds a node at the end of a linked list
void linklist :: append (int num)
{

node *temp, *r;

// if the list is empty, create first node
if (p == NULL)
{

temp = new node;
temp -> data = num;
temp -> link = NULL;
p = temp;

}
else
{

// go to last node
temp = p;
while (temp -> link != NULL)

temp = temp -> link;

// add node at the end
r = new node;
r -> data = num;
r -> link = NULL;
temp -> link = r;

}



}

// adds a new node at the beginning of the linked list
void linklist :: addatbeg (int num)
{
node *temp;

// add new node
temp = new node;
temp -> data = num;
temp -> link = p;
p = temp;

}

// adds a new node after the specified number of nodes
void linklist :: addafter (int loc, int num)
{

node *temp, *r;
temp = p;

// skip to desired portion
for (int i = 0; i < loc - 1; i++)
{

temp = temp -> link;
// if end of linked list is encountered
if (temp == NULL)
{

cout << “\nThere are less than ” << loc
<< “ elements in list” << endl;

return;
}

}

// insert new node
r = new node;
r -> data = num;
r -> link = temp -> link;
temp -> link = r;

}



// displays the contents of the linked list
void linklist :: display()
{

node *temp = p;
// traverse the entire linked list
while (temp != NULL)
{

cout << temp -> data << “ ”;
temp = temp -> link;

}
cout << endl;

}

// counts the number of nodes present in the linked list
int linklist :: count()
{

int c = 0;
node *temp = p;
// traverse the entire linked list
while (temp != NULL)
{

temp = temp -> link;
c++;

}
return c;

}

// deletes the specified node from the linked list
void linklist :: del (int num)
{

node *old, *temp;
temp = p;
while (temp != NULL)
{

if (temp -> data == num)
{

// if node to be deleted is the
// first node in the linked list



if (temp == p)
p = temp -> link;

// delete the intermediate nodes in the linked list
else

old -> link = temp -> link;

// free the memory occupied by the node
delete temp;
return;

}
// traverse the linked list till the last node is reached
else
{

// old points to the previous node
old = temp;
// go to the next node
temp = temp -> link;

}
}
cout << “Element ” << num << “ not found” << endl;

}

// deallocates memory
linklist :: ~linklist()
{

node *q;
while (p != NULL)
{

q = p -> link;
delete p;
p = q;

}
}

int main()
{

linklist l;
cout << “No. of elements: ” << l.count() << endl;



l.append (14); l.append (30); l.append (25);
l.append (42); l.append (17);
cout << “Elements in the linked list: ”;
l.display();
l.addatbeg (99); l.addatbeg (88); l.addatbeg (77);
cout << “Linked list after addition at the beginning: ” << endl;
l.display();
l.addafter (3, 41); l.addafter (6, 89); l.addafter (10, 60);
cout << “Linked list after addition at given position: ” << endl;
l.display();
cout << “No. of elements: ” << l.count();
l.del (99); l.del (42); l.del (10);
cout << “Linked list after deletion: ” << endl;
l.display();
cout << “No. of elements: ” << l.count();
return 0;

}

Output:

No. of elements: 0
Elements in the linked list: 14 30 25 42 17
Linked list after addition at the beginning:
77 88 99 14 30 25 42 17
Linked list after addition at given position:
77 88 99 41 14 30 89 25 42 17 60
No. of elements: 11Element 10 not found
Linked list after deletion:
77 88 41 14 30 89 25 17 60
No. of elements: 9

To begin with we have designed a class linklist, which contains a structure
to represent a node. The structure node contains a data part and a link part.
The variable p has been declared as pointer to a node. We have used this
pointer as pointer to the first node in the linked list. No matter how many
nodes get added to the linked list, p would continue to point to the first
node in the list. When no node has been added to the list, p has been set to
NULL to indicate that the list is empty.



The append() function has to deal with two situations:

(a) The node is being added to an empty list.

(b) The node is being added at the end of an existing list.

In the first case, the condition

if (p == NULL)

gets satisfied. Hence, memory is allocated for the node using new operator.
The data and the link part of this node are set up using the statements

temp -> data = num;
temp -> link = NULL;

Lastly, p is made to point to this node, since the first node has been added
to the list and p must always point to the first node.

In the other case, when the linked list is not empty, the condition

if (p == NULL)

would fail, since p is non-NULL. Now temp is made to point to the first
node in the list through the statement

temp = p;

Then using temp we have traversed through the entire linked list using the
statements

while (temp -> link != NULL)
      temp = temp -> link;

The position of the pointers before and after traversing the linked list is
shown in Figure 3-2.



Figure 3-2. Working of append() function.

Each time through the loop the statement temp = temp -> link makes temp
point to the next node in the list. When temp reaches the last node the
condition temp -> link != NULL would fail. Once outside the loop we
allocate memory for the new node through the statement

r =new node;

Then this new node’s data part is set with num and link part with NULL.
Note that this node is now going to be the last node in the list.

All that now remains to be done is connecting the previous last node with
the new last node. The previous last node is being pointed to by temp and
the new last node is being pointed to by r. They are connected through the
statement

temp -> link = r;

There is often confusion as to how the statement temp = temp -> link
makes temp point to the next node in the list. Let us understand this with
the help of an example. Suppose in a linked list containing 4 nodes, temp is
pointing at the first node. This is shown in Figure 4-3.



Figure 3-3. Connection of nodes.

Instead of showing the links to the next node we have shown the addresses
of the next node in the link part of each node.

When we execute the statement temp = temp -> link;

the right-hand side yields 100. This address is now stored in temp. As a
result, temp starts pointing to the node present at address 100. In effect, the
statement has shifted temp so that it has started pointing to the next node in
the list.

Let us now understand the addatbeg() function. Suppose there are already
5 nodes in the list and we wish to add a new node at the beginning of this
existing linked list. This situation is shown in Figure 3-4.

Figure 3-4. Working of addatbeg() function.

For adding a new node at the beginning, firstly memory is allocated for this
node and data is stored in it through the statement

temp -> data = num;



Now we need to make the link part of this node point to the existing first
node. This has been achieved through the statement

temp -> link = p;

Lastly, this new node must be made the first node in the list. This has been
attained through the statement

p = temp;

The addafter() function permits us to add a new node after a specified
number of node in the linked list. In this function, to begin with, through a
loop we skip the desired number of nodes after which a new node is to be
added. Suppose we wish to add a new node containing data as 41 after the
3rd node in the list. The position of pointers once the control reaches outside
the for loop is shown in Figure 3-5(a). Now memory is allocated for the
node to be inserted and 41 is stored in the data part of it.



Figure 3-5. Working of addafter() function.

All that remains to be done is readjustment of links such that 41 goes in
between 77 and 14. This is achieved through the statements

r -> link = temp -> link;
temp -> link = r;

The first statement makes link part of node containing 41 to point to the
node containing 14. The second statement ensures that the link part of node
containing 77 points to the node containing 41. On execution of the second
statement the earlier link between 77 and 14 is severed. So now 77 no
longer points to 14, it points to 41.

The display() and count() functions are straight forward. I will leave them
for you to understand.

That brings us to the last function in the program i.e. del(). In this function
through the while loop, we have traversed through the entire linked list,
checking at each node, whether it is the node to be deleted. If so, we have
checked if the node being deleted is the first node in the linked list. If it is
so, we have simply shifted p to the next node and then deleted the earlier
node.

If the node to be deleted is an intermediate node, then the position of
various pointers and links before and after the deletion is shown in Figure
3-6.



Figure 3-6. Working of del() function.

More Linked Lists
A common and a wrong impression that beginners carry is that a linked list
is used only for storing integers. However, a linked list can virtually be used
for storing any similar data. For example, there can be a linked list of floats,
a linked list of names, or even a linked list of records, where each record
contains name, age and salary of an employee. These linked lists are shown
in Figure 3-7.



Figure 3-7. Different types of linked list.

Reversing the Links
Having had a feel of linked list, let us now explore some more operations
that can be performed on a linked list. How about reversing the links in the
existing linked list such that the last node becomes the first node and the
first becomes the last? Here is a program that shows how this reversal of
links can be achieved.

Honest Solid Code

Program 3-2. Program to reverse a linked list

#include <iostream>
using namespace std;

class linklist



{
private :

// structure containing a data part and link part */
struct node
{

int data;
node *link;

} *p;
public :

linklist();
void addatbeg (int num);
void reverse();
void display();
~linklist();

};

// initializes data member
linklist :: linklist()
{

p = NULL;
}

// adds a new node at the beginning of the linked list
void linklist :: addatbeg (int num)
{

node *temp;
// add new node
temp = new node;
temp -> data = num;
temp -> link = p;
p = temp;

}

// reverses the linked list
void linklist :: reverse()
{

node *q, *r, *s;

q = p;



r = NULL;

// traverse the entire linked list
while (q != NULL)
{

s = r;
r = q;
q = q -> link;
r -> link = s;

}

p = r;
}

// displays the contents of the linked list
void linklist :: display()
{

node *temp = p;
// traverse the entire linked list
while (temp != NULL)
{

cout << temp -> data << “ ”;
temp = temp -> link;

}
cout << endl;

}

// deallocates memory
linklist :: ~linklist()
{

node *q;
while (p != NULL)
{

q = p -> link;
delete p;
p = q;

}
}



int main()
{

linklist l;

l.addatbeg (7);
l.addatbeg (43);
l.addatbeg (17);
l.addatbeg (3);
l.addatbeg (23);
l.addatbeg (5);
cout << “Elements before reversing: ” << endl;
l.display();
l.reverse();

cout << “Elements after reversing: ” << endl;
l.display();
return 0;

}

Output:

Elements before reversing:
5 23 3 17 43 7
Elements after reversing:
7 43 17 3 23 5

In the function reverse() to traverse the linked list a variable q of the type
struct node * is required. We have initialized q with p. So q also starts
pointing to the first node.

To begin with, we need to store the NULL value in the link part of the first
node, which is done through the statements

s = r;
r = q;
r -> link = s;

r which is of the type struct node * is initialized to a NULL value. Since r
contains NULL, s would also contain NULL. Now r is assigned q so that r
also starts pointing to the first node. Finally r -> link is assigned s so that r
-> link becomes NULL, which is nothing but the link part of the first node.



But if we store a NULL value in the link part of the first node then the
address of the second node will be lost. Hence, before storing a NULL
value in the link part of the first node, q is made to point to the second node
through the statement

q = q -> link;

During the second iteration of the while loop, r points to the first node and
q points to the second node. Now the link part of the second node should
point to the first node. This is done through the same statements

s = r;
r = q;
r -> link = s;

Since r points to the first node, s would also point to the first node. Now r
is assigned the value of q so that r now starts pointing to the second node.
Finally, r -> link is assigned with s so that r -> link starts pointing to the
first node. But if we store the value of s in the link part of second node,
then the address of the third node would be lost. Hence, before storing the
value of s in r -> link, q is made to point to the third node through the
statement

q = q -> link;

While traversing the nodes through the while loop each time q starts
pointing to the next node in the list and r starts pointing to the previous
node. As a result, when the while loop ends all the links have been adjusted
properly such that last node becomes the first node and first node becomes
the last node.

Finally, once outside the while loop, the statement p = r, is executed. This
ensures that the pointer p now starts pointing to the node, which is the last
node of the original list. This is shown in Figure 3-8.



Figure 3-8. Reversing the links.

A Few More Operations



If you think carefully, you can list out so many operations that can be
performed on a linked list. For example, concatenating one linked list at the
end of another, deleting all nodes present in a linked list, modifying certain
elements in a linked list, etc. Given below is a program for concatenation of
linked list and erasing all nodes in the list.

Honest Solid Code

Program 3-3. Program to concatenate linked lists

#include <iostream>
using namespace std;

class linklist
{

private :
// structure containing a data part and a link part
struct node
{

int data;
node *link;

} *p;

public :
linklist();
void append (int num);
void concat (linklist &l);
void display();
int count();
~linklist();

};

// initializes data members
linklist :: linklist()
{

p = NULL;



}

// adds a node at the end of a linked list
void linklist :: append (int num)
{

node *temp;
temp = p;

// if the list is empty, create first node
if (temp == NULL)
{

temp = new node;
p = temp;

}
else
{

// go to last node
while (temp -> link != NULL)

temp = temp -> link;

// add node at the end
temp -> link = new node;
temp = temp -> link;

}
// assign data to the last node
temp -> data = num;
temp -> link = NULL;

}

// concatenates two linked lists
void linklist :: concat (linklist &l)
{

node *temp;

// if the first linked list is empty
if (p == NULL)

p = l.p;

else
{



// if both linked lists are non-empty
if (l.p != NULL)
{

// points to the starting of the first list
temp = p;

// traverse the entire first linked list
while (temp -> link != NULL)

temp = temp -> link;

// concatenate the second list after the first
temp -> link = l.p;

}
}
l.p = NULL;

}

// displays the contents of the linked list
void linklist :: display()
{

node *temp = p;

// traverse the entire linked list
while (temp != NULL)
{

cout << temp -> data << “ ”;
temp = temp -> link;

}
cout << endl;

}

// counts the number of nodes present in the linked list
int linklist :: count()
{

int c = 0;
node *temp = p;

// traverse the entire linked list
while (temp != NULL)
{



temp = temp -> link;
c++;

}
return c;

}

// deallocates memory
linklist :: ~linklist()
{

node *q;
while (p != NULL)
{

q = p -> link;
delete p;
p = q;

}
}

int main()
{

linklist l1;
l1.append (1); l1.append (2);
l1.append (3); l1.append (4);
cout << “Elements in 1st linked list: ” << endl;
l1.display();
cout << “No. of elements in 1st linked list: ” << l1.count() << endl;
linklist l2;
l2.append (5); l2.append (6);
l2.append (7); l2.append (8);
cout << “Elements in 2nd linked list: ” << endl;
l2.display();
cout << “No. of elements in 2nd linked list: ” << l2.count() << endl;
// the result obtained after concatenation is in the first list
l1.concat (l2);
cout << “Elements in 1st linked list after concatenation: ” << endl;
l1.display();
return 0;

}



Output:

Elements in 1st linked list:
1 2 3 4
No. of elements in 1st linked list: 4
Elements in 2nd linked list:
5 6 7 8
No. of elements in 2nd linked list: 4
Elements in 1st linked list after concatenation:
1 2 3 4 5 6 7 8

Recursive Operations on Linked List
In C++, it is possible for the functions to call themselves. A function is
called ‘recursive’ if a statement within the body of a function calls the same
function. Some of the operations that are carried out on linked lists can be
easily implemented using recursion. These include counting the number of
nodes present in a linked list, comparing two linked lists, copying one
linked list into another, adding a new node at the end of the linked list, etc.

Given below is the program for carrying out each of these operations. The
recursive functions in this program are pretty straight-forward. Hence, I
would omit the discussion about working of each of them.

Honest Solid Code

Program 3-4. Recursive functions to count nodes in a linked list,
comparing two linked lists, cloning a linked list and adding a new node at
the end of a linked list

#include <iostream>
using namespace std;

class linklist
{

private :



// structure containing a data part and link part
struct node
{

int data;
node *link;

} *p;

public :
linklist();
void add (int num);
void addatend (node **ptr, int num);
void display();
int length();
int getlength(node *ptr);
int operator == (linklist &l);
int compare (node *ptr1, node *ptr2);
void copy (linklist &l);
void duplicate (node *ptr1, node **ptr2);
~linklist();

};

// initializes data memebr
linklist :: linklist()
{

p = NULL;
}

void linklist :: add (int num)
{

addatend (&p, num);
}

// adds a new node at the end of the linked list
void linklist :: addatend (node **ptr, int num)
{

if (*ptr == NULL)
{

(*ptr) = new node;
(*ptr) -> data = num;



(*ptr) -> link = NULL;
}
else

addatend (&((*ptr) -> link), num);
}

void linklist :: display()
{

node *temp = p;
// traverse the entire linked list
while (temp != NULL)
{

cout << temp -> data << “ ”;
temp = temp -> link;

}
cout << endl;

}

int linklist :: length()
{

return getlength(p);
}

// counts the number of nodes in a linked list
int linklist :: getlength (node *ptr)
{

int l;

// if list is empty or if NULL is encountered
if (ptr == NULL)

return (0);
else
{

// go to next node
l = 1 + getlength (ptr -> link);
return (l);

}
}



// calls compare
int linklist :: operator == (linklist &l)
{

return compare (p, l.p);
}

// compares 2 linked lists and returns 1 if
// linked lists are equal and 0 if unequal
int linklist :: compare (node *q, node *r)
{

if (q == NULL && r == NULL)
return 1;

else
{

if (q == NULL || r == NULL)
return 0;

else if (q -> data != r -> data)
return 0;

else
compare (q -> link, r -> link);

}
}

// calls copy to copy a linked list into another
void linklist :: copy (linklist &l)
{

duplicate (l.p, &p);
}

// copies a linked list into another
void linklist :: duplicate (node *ptr1, node **ptr2)
{

if (ptr1 != NULL)
{

*ptr2 = new node;
(*ptr2) -> data = ptr1 -> data;
(*ptr2) -> link = NULL;
duplicate (ptr1 -> link, &((*ptr2) -> link));



}
}

// deallocates memory
linklist :: ~linklist()
{

node *q;
while (p != NULL)
{

q = p -> link;
delete p;
p = q;

}
}

int main()
{

linklist l1;
l1.add (1);
l1.add (2);
l1.add (3);
l1.add (4);
l1.display();
cout << “Length of linked list: ” << l1.length() << endl;

linklist l2;
l2.add (1);
l2.add (2);
l2.add (3);
l2.display();

if (l1 == l2)
cout << “Both linked lists are equal” << endl;

else
cout << “Both linked lists are different” << endl;

linklist l3;
l3.copy (l1);
l3.display();



return 0;
}

Output:

1 2 3 4
Length of linked list: 4
1 2 3
Both linked lists are different
1 2 3 4

Doubly Linked Lists
In the linked lists that we have used so far, each node provides information
about where is the next node in the list. It has no knowledge about where
the previous node lies in memory. If we are at say the 15th node in the list,
then to reach the 14th node we have to traverse the list right from the first
node. To avoid this, we can store in each node not only the address of next
node but also the address of the previous node in the linked list. This
arrangement is often known as a ‘Doubly Linked List’ and is shown in
Figure 3-9.

Figure 3-9. Doubly linked list.

The following program implements the Doubly Linked List (DLL).

Honest Solid Code



Program 3-4. Program to implement a doubly linked list

#include <iostream>
using namespace std;

class linklist
{

private :
// structure representing a node of the doubly linked list
struct dnode
{

dnode *prev;
int data;
dnode * next;

} *p;
public :

linklist();
void d_append (int num);
void d_addatbeg (int num);
void d_addafter (int loc, int num);
void d_display();
int d_count();
void d_delete(int i);
~linklist();

};

// initializes data member
linklist :: linklist()
{

p = NULL;
}

// adds a new node at the end of the doubly linked list
void linklist :: d_append (int num)
{

dnode *r, *q;
q = p;

// if the linked list is empty



if (q == NULL)
{

//create a new node
q = new dnode;
q -> prev = NULL;
q -> data = num;
q -> next = NULL;
p = q;

}
else
{

// traverse the linked list till the last node is reached
while (q -> next != NULL)

q = q -> next;

// add a new node at the end
r = new dnode;
r -> data = num;
r -> next = NULL;
r -> prev = q;
q -> next = r;

}
}

// adds a new node at the begining of the linked list
void linklist :: d_addatbeg (int num)
{

dnode *q;

// create a new node
q = new dnode;
q -> prev = NULL;
q -> data = num;
q -> next = p;

// make new node the head node
p -> prev = q;
p = q;

}



// adds a new node after the specified number of nodes
void linklist :: d_addafter (int loc, int num)
{

dnode *q;
q = p;

// skip to desired portion
for (int i = 0; i < loc; i++)
{

q = q -> next;
// if end of linked list is encountered
if (q == NULL)
{

cout << “There are less than ” << loc << “ elements” << endl;
return;

}
}

// insert new node
q = q -> prev;
dnode *temp = new dnode;
temp -> data = num;
temp -> prev = q;
temp -> next = q -> next;
temp -> next -> prev = temp;
q -> next = temp;

}

// displays the contents of the linked list
void linklist :: d_display()
{

dnode *temp = p;
// traverse the entire linked list
while (temp != NULL)
{

cout << temp -> data << “ ”;
temp = temp -> next;

}



cout << endl;
}

// counts the number of nodes present in the linked list
int linklist :: d_count()
{

int c = 0;
dnode *temp = p;

// traverse the entire linked list
while (temp != NULL)
{

temp = temp -> next;
c++;

}
return c;

}

// deletes the specified node from the doubly linked list
void linklist :: d_delete (int num)
{

dnode *q = p;
// traverse the entire linked list
while (q != NULL)
{

// if node to be deleted is found
if (q -> data == num)
{

// if node to be deleted is the first node
if (q == p)
{

p = p -> next;
p -> prev = NULL;

}
else
{

// if node to be deleted is the last node
if (q -> next == NULL)



q -> prev -> next = NULL;
else
// if node to be deleted is any intermediate node
{

q -> prev -> next = q -> next;
q -> next -> prev = q -> prev;

}
delete q;

}

// return back after deletion
return;

}

// go to next node
q = q -> next;

}
cout << num << “ not found” << endl;

}

// deallocates memory
linklist :: ~linklist()
{

dnode *q;
while (p -> next != NULL)
{

q = p -> next;
delete p;
p = q;

}
}

int main()
{

linklist l;
l.d_append (11); l.d_append (2);
l.d_append (14); l.d_append (17);
l.d_append (99);



cout << “Elements in DLL: ” << endl;
l.d_display();
cout << “No. of elements: ” << l.d_count() << endl;

l.d_addatbeg (33); l.d_addatbeg (55);
cout << “Elements in DLL after addition at the beginning: ”;
l.d_display();
cout << “No. of elements: ” << l.d_count() << endl;

l.d_addafter (4, 66); l.d_addafter (2, 96);
cout << “Elements in DLL after addition at given position: ” << endl;
l.d_display();
cout << “No. of elements: ” << l.d_count() << endl;

l.d_delete (55); l.d_delete (2); l.d_delete (99);
cout << “Elements in DLL after deletion: ” << endl;
l.d_display();
cout << “No. of elements: ” << l.d_count() << endl;
return 0;

}

Let us now understand the different functions that we have defined in the
program. Let us begin with the one that appends a new node at the end of a
double linked list.

Function d_append()
The d_append() function adds a node at the end of the existing list. It also
checks the special case of adding the first node if the list is empty. This
function accepts a parameter num, which holds an integer to be added to
the list.

To begin with we initialize q which is of the type struct dnode * with the
value stored at p. This is done because using q the entire list is traversed if
it is non-empty.

If the list is empty then the condition

if (q == NULL)



gets satisfied. Now memory is allocated for the new node whose address is
stored in q (i.e., p). Using q a NULL value is stored in its prev and next
links and the value of num is assigned to its data part.

If the list is non-empty then through the statements

while (q -> next != NULL)
     q = q -> next;

q is made to point to the last node of the list. Then memory is allocated for
the node whose address is stored in r. A NULL value is stored in the next
part of this node, because this is going to be last node. Now what remains to
be done is to link this node with rest of the list. This is done through the
statements

r -> prev = q;
q -> next = r;

The statement r -> prev = q makes the prev part of the new node r to point
to the previous node q. The statement q -> next = r makes the next part of
q to point to the last node r. This is shown in Figure 3-10.



Figure 3-10. Addition of a node to a Doubly linked list.

Function d_addatbeg()
The d_addatbeg() function adds a node at the beginning of the existing list.
This function too accepts parameter num, which holds an integer to be
added to the list.

Memory is allocated for the new node whose address is stored in q. Then
num is stored in the data part of the new node. A NULL value is stored in
prev part of the new node as this is going to be the first node of the list. The
next part of this new node should contain the address of the first node of the
list. This is done through the statement

q -> next = p;



Now what remains to be done is to store the address of this new node into
the prev part of the first node and make this new node the first node in the
list. This is done through the statements

p -> prev = q;
p = q;

These operations are shown in Figure 3-11.



Figure 3-11. Working of d_addatbeg() and d_addafter().

Function d_addafter()
The d_addafter() function adds a node at the specified position of an
existing list. This operation of adding a new node in between two existing



nodes can be better understood with the help of Figure 3-11.

This function accepts two parameters. The first parameter loc specifies the
node number after which the new node must be inserted. The second
parameter num is an integer, which is to be added to the list.

A loop is executed to reach the position where the node is to be added. This
loop also checks whether the position loc that we have mentioned, really
occurs in the list or not. When the loop ends, we reach the loc position
where the node is to be inserted. By this time q is pointing to the node
before which the new node is to be added.

The statement

q = q -> prev;

makes q to point to the node after which the new node should be added.
Then memory is allocated for the new node and its address is stored in
temp. The value of num is stored in the data part of the new node.

The prev part of the new node should point to q. This is done through the
statement

temp -> prev = q;

The next part of the new node should point to the node whose address is
stored in the next part of node pointed to by q. This is achieved through the
statement

temp -> next = q -> next;

Now what remains to be done is to make prev part of the next node (node
pointed by q -> next) to point to the new node. This is done through the
statement

temp -> next -> prev = temp;

At the end, we change the next part of the q to make it point to the new
node, and this is done through the statement

q -> next = temp;

Function d_delete()



The function d_delete() deletes a node from the list if the data part of that
node matches num. This function receives the number that is to be deleted
from the list.

We run a loop to traverse the list. Inside the loop the data part of each node
is compared with the num value. If the num value matches the data part in
the node then we need to check the position of the node to be deleted.

If it happens to be the first node, then the first node is made to point to the
next part of the first node. This is done through the statement

p = p -> next;

Then, a value NULL is stored in prev part of the second node, since it is
now going to become the first node. This is done through the statement

p -> prev = NULL;

If the node to be deleted happens to be the last node, then NULL is stored
in the next part of the second last node. This is done through the statements

if (q -> next == NULL)
     q -> prev -> next = NULL;

If the node to be deleted happens to be any intermediate node, then the
address of the next node is stored in the next part of the previous node and
the address of the previous node is stored in the prev part of the next node.
This is done through the statements

q -> prev -> next = q -> next;
q -> next -> prev = q -> prev;

Finally, the memory occupied by the node being deleted is released by
using the delete operator. Figure 3-12 shows the working of the d_delete()
function.



Figure 3-12. Working of d_delete() function.

Chapter Bullets

Summary of chapter

(a) Linked List is a linear data structure used to store similar data.



(b) Unlike an array, in a linked list there’s no need to specify how many
elements you’re going to store ahead of time. One can keep adding
elements as long as there’s enough memory in the machine.

(c) Linked list is implemented using structure data type.

(d) Linked list may be singly linked or doubly linked.

(e) Singly linked lists have a single pointer pointing to the next node in the
list. The last pointer is empty or points to null, signaling the end of the
list.

(f) Doubly linked lists have two pointers, one pointing to the next node and
one pointing to the previous node. The first node’s previous pointer
points to null and the last node’s next pointer points to null to signal the
end of the list.

Check Your Progress

Exercise - Level I

[A] State whether the following statements are True or False:

(a) Linked list is used to store similar data.

(b) All nodes in the linked may be in non-contiguous memory locations.

(c) The link part of the last node in a singly linked list always contains
NULL.

(d) In a singly linked list, if we lose the location of the first node it is as
good as having lost the entire linked list.

(e) Doubly linked list facilitates movement from one node to another in
either direction.

(f) A doubly linked list will occupy less memory as compared to a
corresponding singly linked list.



(g) If we are to traverse from first node to last node it would be faster to do
so if the linked list is singly linked instead of doubly linked.

(h) In a structure used to represent the node of a doubly linked list it is
necessary that the structure elements are in the order backward link,
data, forward link.

Sharpen Your Skills

Exercise - Level II

[B] Answer the Following:

(a) Write a program that reads the name, age and salary of 10 persons and
maintains them in a linked list sorted by name.

(b) There are two linked lists A and B containing the following data:
A: 3, 7, 10, 15, 16, 9, 22, 17, 32
B: 16, 2, 9, 13, 37, 8, 10, 1, 28

Write a program to create:

- A linked list C that contains only those elements that are common in
linked list A and B.

- A linked list D which contains all elements of A as well as B ensuring
that there is no repetition of elements.

(c) There are two linked lists A and B containing the following data:

A: 7, 5, 3, 1, 20
B: 6, 25, 32, 11, 9

Write a function to combine the two lists such that the resulting list
contains nodes in the following elements:

7, 6, 5, 25, 3, 32, 1, 11, 20, 9

You are not allowed to create any additional node while writing the
function.



Coding Interview Questions

Exercise Level III

(a) A linked list contains some positive numbers and some negative
numbers. Using this linked list write a program to create two new linked
lists, one containing all positive numbers and the other containing all
negative numbers.

(b) Write a program to delete duplicate elements in a linked list.

Case Scenario Exercise

Polynomials using Linked List

Polynomials like 5x4 + 2x3 + 7x2 + 10x - 8 can be maintained using a linked
list. To achieve this each node should consist of three elements, namely
coefficient, exponent and a link to the next term. Assume that the exponent
of each successive term is less than that of the previous term. Write a
program to build a linked list to represent a polynomial and perform
common polynomial operations like addition and multiplication.



Chapter 04
Sparse Matrices

Lean Is Better



Why This Chapter Matters?
Computer’s memory is a costly resource. We have to
use it judiciously. Sparse matrices often eat away lot
of costly memory space. This chapter explains how

to conserve this memory and still work with matrices
as usual.



71 percent of earth is occupied by water, leaving a meagerly 29 percent
for land. It is only natural that we need to conserve the available space.

Nobody should occupy more space than what they deserve to occupy, be it
animals, man, plants or matrices. There is no point in wasting costly space
in computer’s memory in storing elements that do not deserve a place in it.
Sparse matrix is the case in point.

If many elements from a matrix have a value 0 then the matrix is known as
a sparse matrix. There is no precise definition of when a matrix is sparse
and when it is not, but it is a concept, which we can all recognize
intuitively. If the matrix is sparse we must consider an alternate way of
representing it rather than the normal row major or column major
arrangement. This is because if majority of elements of the matrix are 0
then an alternative through which we can store only the non-zero elements
and keep intact the functionality of the matrix can save a lot of memory
space. Figure 4-1 shows a sparse matrix of dimension 7x7.

Figure 4-1. Representation of a sparse matrix of dimension 7 x 7.



A common way of representing non-zero elements of a sparse matrix is the
3-tuple forms. In this form each non-zero element is stored in a row, with
the 1st and 2nd element of this row containing the row and column in which
the element is present in the original matrix. The 3rd element in this row
stores the actual value of the non-zero element. For example, the 3-tuple
representation of the sparse matrix shown in Figure 4-1 is shown below.

int spmat[10][3] = {
7, 7, 9,
0, 3, -5,
1, 1, 4,
1, 6, 7,
2, 4, 9,
3, 1, 3,
3, 3, 2,
4, 0, 11,
4, 2, 2,
6, 2, 8

}

There are two ways in which information of a 3-tuple can be stored:

- Arrays
- Linked List

In both representations information about the non-zero elements is stored.
However, as the number of non-zero elements in a sparse matrix may vary,
it would be efficient to use a linked list to represent it.

Representation of Sparse Matrix as an Array
Let us see a program that accepts elements of a sparse matrix and creates an
array containing 3-tuples of non-zero elements present in the sparse matrix.

Honest Solid Code



Program 4-1. Sparse Matrix in 3-tuple form

#include <iostream>
using namespace std;
const int MAX1 = 3;
const int MAX2 = 3;

class sparse
{

private :
int *sp;
int row;

public :
sparse();
void create_array();
void display();
int count();
void create_tuple (sparse &s);
void display_tuple();
~sparse();

};

// initialises data members
sparse :: sparse()
{

sp = NULL;
}

// dynamically creates the matrix of size MAX1 x MAX2
void sparse :: create_array()
{

int n;
sp = new int [ MAX1 * MAX2 ];
for (int i = 0; i < MAX1 * MAX2; i++)
{

cout << “Enter element no. ” << i << “: ”;
cin >> n;
* (sp + i) = n;

}



}

// displays the contents of the matrix
void sparse :: display()
{

// traverses the entire matrix
for (int i = 0; i < MAX1 * MAX2; i++)
{

// positions the cursor to the new line for every new row
if (i % MAX2 == 0)

cout << endl;
cout << * (sp + i) << “ ”;

}
}

// counts the number of non-zero elements
int sparse :: count()
{

int cnt = 0;
for (int i = 0; i < MAX1 * MAX2; i++)
{

if (* (sp + i) != 0)
cnt++;

}
return cnt;

}

// creates an array that stores information about non-zero elements
void sparse :: create_tuple (sparse &s)
{

int r = 0 , c = -1, l = -1;

row = s.count() + 1;
sp = new int[ row * 3 ];
* (sp + 0) = MAX1;
* (sp + 1) = MAX2;
* (sp + 2) = row - 1;

l = 2;



for (int i = 0; i < MAX1 * MAX2; i++)
{

c++;
// sets the row and column values
if (((i % MAX2) == 0) && (i != 0))
{

r++;
c = 0;

}
// check for non-zero element
// assign row, column and non-zero element value
if (* (s.sp + i) != 0)
{

l++;
* (sp + l) = r;
l++;
* (sp + l) = c;
l++;
* (sp + l) = * (s.sp + i);

}
}

}

// displays the contents of 3-tuple
void sparse :: display_tuple()
{

for (int i = 0; i < row * 3; i++)
{

if (i % 3 == 0)
cout << endl;

cout << * (sp + i) << “ ”;
}

}

// deallocates memory
sparse :: ~sparse()
{

delete sp;



}

int main()
{

sparse s1;
s1.create_array();
cout << endl << “Elements in Sparse Matrix: ”;
s1.display();
int c = s1.count();
cout << “\n\nNumber of non-zero elements: ” << c;
sparse s2;
s2.create_tuple (s1);
cout << “\n\nArray of non-zero elements: ”;
s2.display_tuple();
return 0;

}

Output:
Enter element no. 0: 0
Enter element no. 1: 2
Enter element no. 2: 0
Enter element no. 3: 9
Enter element no. 4: 0
Enter element no. 5: 1
Enter element no. 6: 0
Enter element no. 7: 0
Enter element no. 8: -4

Elements in Sparse Matrix:
0 2 0
9 0 1
0 0 -4

Number of non-zero elements: 4

Array of non-zero elements:
3 3 4
0 1 2
1 0 9

.



1 2 1
2 2 -4

In this program we have designed a class called sparse. In the
create_array() function, we have dynamically created a matrix of size
MAX1 x MAX2. The values for the matrix are accepted through keyboard.
The display() function displays the contents of the sparse matrix and the
count() function counts the total number of non-zero elements present in
sparse matrix.

The create_tuple() function creates a 2-D array dynamically. But the
question arises as how much space should get allocated for this array? Since
each row in the 3-tuple form represents a non-zero element in the original
array the new array should contain as many rows as the number of non-zero
elements in the original matrix. From the 3-tuple form we must be able to
build the original array. Hence the very first row in the new array should
contain number of row, number of columns and number of non-zero
elements in the original array. In the program we have determined the size
of the new array through the following statements:

row = s.count() + 1;
sp = new int[row * 3];

In the first statement we have obtained the count of non-zero elements
present in the given array. To that count we have added 1. The first row
(i.e., 0th row) in this array stores the information about the total number of
rows, columns and non-zero elements present in the given array. From
second row (i.e., 1st row) onwards this array stores the row and column
position of a non-zero element and the value of the non-zero element. Since
the number of rows in the array depends on the number of non-zero
elements in the given array, we have created the array dynamically. The
number of columns in this array would always be 3. The 0th column stores
the row number of the non-zero element. The 1st column stores the column
number of the non-zero element and the 2nd column stores the value of non-
zero element.

Lastly, the display_tuple() function displays the contents of 3-tuple.

Common Matrix Operations



Common matrix operations are addition, multiplication, transposition, etc.
Let us see how these operations are carried out on a sparse matrix
implemented as an array. Note that each program that we are going to
discuss now consists of functions—create_array(), create_tuple(),
display(), display_tuple() and count(). We have already seen the working
of these functions in previous program. Hence, we shall discuss only the
function(s) that perform given matrix operation.

Transpose of a Sparse Matrix
Following program accepts elements of a sparse matrix, creates a 3- tuple
form of non-zero elements present in the sparse matrix and then obtains a
transpose of the sparse matrix from the 3-tuple form.

Honest Solid Code

Program 4-2. Transpose of a Sparse Matrix

#include <iostream>
using namespace std;
const int MAX1 = 3;
const int MAX2 = 3;

class sparse
{

private :
int *sp;
int row;

public :
sparse();
void create_array();
void display();
int count();
void create_tuple (sparse &s);
void display_tuple();



void transpose (sparse &s);
void display_transpose();
~sparse();

};

// initialises data members
sparse :: sparse()
{

sp = NULL;
}

// creates the matrix of size MAX1 x MAX2
void sparse :: create_array()
{

int n;
sp = new int [ MAX1 * MAX2 ];
for (int i = 0; i < MAX1 * MAX2; i++)
{

cout << “Enter element no. ” << i << “: ”;
cin >> n;
* (sp + i) = n;

}
}

// displays the contents of the matrix
void sparse :: display()
{

// traverses the entire matrix
for (int i = 0; i < MAX1 * MAX2; i++)
{

// positions the cursor to the new line for every new row
if (i % MAX2 == 0)

cout << endl;
cout << * (sp + i) << “ ”;

}
}

// counts the number of non-zero elements
int sparse :: count()



{
int cnt = 0;
for (int i = 0; i < MAX1 * MAX2; i++)
{

if (* (sp + i) != 0)
cnt++;

}
return cnt;

}

// creates an array that stores information about non-zero elements
void sparse :: create_tuple (sparse &s)
{

int r = 0 , c = -1, l = -1;

row = s.count() + 1;
sp = new int[ row * 3 ];
* (sp + 0) = MAX1;
* (sp + 1) = MAX2;
* (sp + 2) = row - 1;

l = 2;
for (int i = 0; i < MAX1 * MAX2; i++)
{

c++;
// sets the row and column values
if (((i % MAX2) == 0) && (i != 0))
{

r++;
c = 0;

}
// check for non-zero element
// assign row, column and non-zero element value
if (* (s.sp + i) != 0)
{

l++;
* (sp + l) = r;
l++;



* (sp + l) = c;
l++;
* (sp + l) = * (s.sp + i);

}
}

}

// obtains transpose of an array
void sparse :: transpose (sparse &s)
{

sp = new int[ s.row * 3 ];
row = s.row;

* (sp + 0) = * (s.sp + 1);
* (sp + 1) = * (s.sp + 0);
* (sp + 2) = * (s.sp + 2);

int col = * (sp + 1);
int elem = * (sp + 2);

if (elem <= 0)
return;

int x, y, c, p, pos_1, pos_2;
x = 1;
for (c = 0; c < col; c++)
{

for (y = 1; y <= elem; y++)
{

p = y * 3 + 1;
if (* (s.sp + p) == c)
{

pos_2 = x * 3 + 0;
pos_1 = y * 3 + 1;
* (sp + pos_2) = * (s.sp + pos_1);
pos_2 = x * 3 + 1;
pos_1 = y * 3 + 0;
* (sp + pos_2) = * (s.sp + pos_1);
pos_2 = x * 3 + 2;



pos_1 = y * 3 + 2;
* (sp + pos_2) = * (s.sp + pos_1);
x++;

}
}

}
}

// displays the contents of 3-tuple
void sparse :: display_tuple()
{

for (int i = 0; i < row * 3; i++)
{

if (i % 3 == 0)
cout << endl;

cout << * (sp + i) << “ ”;
}

}

// displays 3-tuple after transpose operation
void sparse :: display_transpose()
{

for (int i = 0; i < row * 3; i++)
{

if (i % 3 == 0)
cout << endl;

cout << * (sp + i) << “ ”;
}

}

// deallocates memory
sparse :: ~sparse()
{

delete sp;
}

int main()
{

sparse s1;



s1.create_array();
cout << endl << “Elements in Sparse Matrix: ”;
s1.display();
int c = s1.count();
cout << “\n\nNumber of non-zero elements: ” << c;
sparse s2;
s2.create_tuple (s1);
cout << “\n\nArray of non-zero elements: ”;
s2.display_tuple();
sparse s3;
s3.transpose (s2);
cout << “\n\nTranspose of array: ”;
s3.display_transpose();
return 0;

}

Output:
Enter element no. 0: 4
Enter element no. 1: 0
Enter element no. 2: 1
Enter element no. 3: 0
Enter element no. 4: 0
Enter element no. 5: 3
Enter element no. 6: -2
Enter element no. 7: 0
Enter element no. 8: 0

Elements in Sparse Matrix:
4 0 1
0 0 3
-2 0 0

Number of non-zero elements: 4

Array of non-zero elements:
3 3 4
0 0 4
0 2 1
1 2 3



2 0 -2

Transpose of array:
3 3 4
0 0 4
0 2 -2
2 0 1
2 1 3

In the transpose() function first we have allocated memory required to
store the elements in the target 3-tuple. Next, we have stored the total
number of rows, columns and non-zero elements that this 3-tuple will hold.
This is achieved through the following three statements:

* (sp + 0) = * (s.sp + 1);
* (sp + 1) = * (s.sp + 0);
* (sp + 2) = * (s.sp + 2);

Note that, here in sp, the place where total number of rows should get
stored, we have stored total number of columns. Similarly in place where
total number of columns should get stored, we have stored total number of
rows. This is because in case of transpose operation total number rows
become equal to total number of columns and vice versa.

The transpose operation is carried out through a pair of for loops. The outer
for loop runs till the non-zero elements of col number of columns (of
source 3-tuple) are not scanned. In the inner for loop first we have obtained
the position at which the column number of a non-zero element is stored (in
the source 3-tuple) through the statement:

p = y * 3 + 1;

Then we have checked whether the column number of a non-zero element
matches with the column number currently being considered i.e., c. If the
two values match, then the information is stored in the target 3-tuple
through the statements given below:

pos_2 = x * 3 + 0;
pos_1 = y * 3 + 1;
* (sp + pos_2) = * (s.sp + pos_1);



The variable pos_2 is used for the target 3-tuple, to store the position at
which data from source 3-tuple should get copied. Similarly, the variable
pos_1 is used for the source 3-tuple, to extract data from it. The third
statement copies the column position of a non-zero element from source 3-
tuple to the target 3-tuple. This column number gets stored at the row
position in target 3-tuple.

On similar lines the row position of a non-zero element of source 3-tuple is
copied at the column position of the target 3-tuple through the following
statements:

pos_2 = x * 3 + 1;
pos_1 = y * 3 + 0;
* (sp + pos_2) = * (s.sp + pos_1);

Finally, the non-zero value from source 3-tuple is copied to the target 3-
tuple through the following statements:

pos_2 = x * 3 + 2;
pos_1 = y * 3 + 2;
* (sp + pos_2) = * (s.sp + pos_1);

The target 3-tuple thus obtained is nothing but a transpose of an array that
user has entered through create_array() function. But the target 3- tuple
stores the information of non-zero elements. The elements in this 3-tuple
are then displayed by calling display_transpose() function.

Addition of Sparse Matrices
Let us now see a program that carries out addition of two sparse matrices
represented in 3-tuple form. Here is the program…

Honest Solid Code

Program 4-3. Addition of Sparse Matrices

#include <iostream>



using namespace std;
const int MAX1 = 3;
const int MAX2 = 3;
const int MAXSIZE = 9;
const int BIGNUM = 100;

class sparse
{

private :
int *sp;
int row;
int *result;

public :
sparse();
void create_array();
int count();
void display();
void create_tuple (sparse &s);
void display_tuple();
void addmat (sparse &s1, sparse &s2);
void display_result();
~sparse();

};

// initialises data members
sparse :: sparse()
{

sp = NULL;
result = NULL;

}

// dynamically creates the matrix
void sparse :: create_array()
{

int n;
// allocate memory
sp = new int [MAX1 * MAX2];
// add elements to the array



cout << endl;
for (int i = 0; i < MAX1 * MAX2; i++)
{

cout << “Enter element no. ” << i << “: ”;
cin >> n;
* (sp + i) = n;

}
}

// displays the contents of the matrix
void sparse :: display()
{

// traverses the entire matrix
for (int i = 0; i < MAX1 * MAX2; i++)
{

// positions the cursor to the new line for every new row
if (i % MAX2 == 0)

cout << endl;
cout << * (sp + i) << “ ”;

}
}

// counts the number of non-zero elements
int sparse :: count()
{

int cnt = 0;
for (int i = 0; i < MAX1 * MAX2; i++)
{

if (* (sp + i) != 0)
cnt++;

}
return cnt;

}

// creates an array that stores information about non-zero elements
void sparse :: create_tuple (sparse &s)
{

int r = 0 , c = -1, l = -1;



// get the total number of non-zero elements
// add 1 to store total no. of rows, cols, and non-zero values
row = s.count() + 1;

// allocate memory
sp = new int[row * 3];

// store information about
// total no. of rows, cols, and non-zero values
* (sp + 0) = MAX1;
* (sp + 1) = MAX2;
* (sp + 2) = row - 1;
l = 2;
// scan the array and store info. about non-zero values
// in the 3-tuple
for (int i = 0; i < MAX1 * MAX2; i++)
{

c++;

// sets the row and column values
if (((i % MAX2) == 0) && (i != 0))
{

r++;
c = 0;

}

// checks for non-zero element
// stores row, column and non-zero element value
if (* (s.sp + i) != 0)
{

l++;
* (sp + l) = r;
l++;
* (sp + l) = c;
l++;
* (sp + l) = * (s.sp + i);

}
}

}



// displays the contents of the matrix
void sparse :: display_tuple()
{

// traverses the entire matrix
cout << “\nElements in a 3-tuple: ” << endl;
int j = (* (sp + 2) * 3) + 3;
for (int i = 0; i < j; i++)
{

// positions the cursor to the new line for every new row
if (i % 3 == 0)

cout << endl;
cout << * (sp + i) << “ ”;

}
cout << endl;

}

// carries out addition of two matrices
void sparse :: addmat (sparse &s1, sparse &s2)
{

int i = 1, j = 1, k = 1;
int elem = 1;
int max, amax, bmax;
int rowa, rowb, cola, colb, vala, valb;

// get the total number of non-zero values
// from both the matrices
amax = * (s1.sp + 2);
bmax = * (s2.sp + 2);
max = amax + bmax;

// allocate memory for result
result = new int[MAXSIZE*3];

while (elem <= max)
{

// check if i <= max.
// get info. about non-zero values in first 3-tuple
if (i <= amax)
{



rowa = * (s1.sp + i * 3 + 0);
cola = * (s1.sp + i * 3 + 1);
vala = * (s1.sp + i * 3 + 2);

}
else

rowa = cola = BIGNUM;

// check if j <= max. non-zero values
// get info. about non-zero values in second 3-tuple
if (j <= bmax)
{

rowb = * (s2.sp + j * 3 + 0);
colb = * (s2.sp + j * 3 + 1);
valb = * (s2.sp + j * 3 + 2);

}
else

rowb = colb = BIGNUM;

// if row no. of both 3-tuple are same
if (rowa == rowb)
{

// if col no. of both 3-tuple are same
if (cola == colb)
{

// add tow non-zero values
// store in result
* (result + k * 3 + 0) = rowa;
* (result + k * 3 + 1) = cola;
* (result + k * 3 + 2) = vala + valb;
i++;
j++;
max–;

}

// if col no. of first 3-tuple is < col no. of
// second 3-tuple, then add info. as it is
// to result
if (cola < colb)



{
* (result + k * 3 + 0) = rowa;
* (result + k * 3 + 1) = cola;
* (result + k * 3 + 2) = vala;
i++;

}

// if col no. of first 3-tuple is > col no. of
// second 3-tuple, then add info. as it is
// to result
if (cola > colb)
{

* (result + k * 3 + 0) = rowb;
* (result + k * 3 + 1) = colb;
* (result + k * 3 + 2) = valb;
j++;

}
k++;

}

// if row no. of first 3-tuple is < row no. of
// second 3-tuple, then add info. as it is
// to result

if (rowa < rowb)
{

* (result + k * 3 + 0) = rowa;
* (result + k * 3 + 1) = cola;
* (result + k * 3 + 2) = vala;
i++;
k++;

}

// if row no. of first 3-tuple is > row no. of
// second 3-tuple, then add info. as it is
// to result

if (rowa > rowb)
{



* (result + k * 3 + 0) = rowb;
* (result + k * 3 + 1) = colb;
* (result + k * 3 + 2) = valb;
j++;
k++;

}
elem++;

}

// add info about the total no. of rows, cols, and non-zero values
// that the resultant array contains to the result
* (result + 0) = MAX1;
* (result + 1) = MAX2;
* (result + 2) = max;

}

// displays the contents of the matrix
void sparse :: display_result()
{

// traverses the entire matrix
for (int i = 0; i < (* (result + 0 + 2) + 1) * 3; i++)
{

// positions the cursor to the new line for every new row
if (i % 3 == 0)

cout << endl;
cout << * (result + i) << “ ”;

}
}

// deallocates memory
sparse :: ~sparse()
{

if (sp != NULL)
delete sp;

if (result != NULL)
delete result;

}

int main()



{
sparse s1, s2;
s1.create_array();
s2.create_tuple (s1);
s2.display_tuple();
sparse s3, s4;
s3.create_array();
s4.create_tuple (s3);
s4.display_tuple();
sparse s5;
s5.addmat (s2, s4);
cout << endl << “Result of addition of two matrices: ” << endl;
s5.display_result();
return 0;

}

Output:
Enter element no. 0: 1
Enter element no. 1: 0
Enter element no. 2: 2
Enter element no. 3: 0
Enter element no. 4: 3
Enter element no. 5: 0
Enter element no. 6: 4
Enter element no. 7: 0
Enter element no. 8: 0

Elements in a 3-tuple:
3 3 4
0 0 1
0 2 2
1 1 3
2 0 4

Enter element no. 0: 0
Enter element no. 1: 0
Enter element no. 2: 0
Enter element no. 3: 1



Enter element no. 4: 0
Enter element no. 5: 2
Enter element no. 6: 0
Enter element no. 7: 9
Enter element no. 8: 0

Elements in a 3-tuple:
3 3 3
1 0 1
1 2 2
2 1 9

Result of addition of two matrices:
3 3 7
0 0 1
0 2 2
1 0 1
1 1 3
1 2 2
2 0 4
2 1 9

The function addmat() carries out addition of two sparse matrices. In this
function firstly we have obtained the total number of non-zero elements that
the target 3-tuple would hold. This has been achieved through the following
statements:

amax = * (s1.sp + 2);
bmax = * (s2.sp + 2);
max = amax + bmax;

Then we have allocated memory for the target 3-tuple that would store the
result obtained from addition. Through a while loop we have carried out the
addition operation. The variables i and j are used as counters for first 3-
tuple (pointed to by s1.sp) and second 3-tuple (pointed to by s2.sp)
respectively. Then we have retrieved the row number, column number and
the non-zero value of ith and jth non-zero element respectively. The
following cases are considered while performing addition.



(a) If the row numbers as well as column numbers of the non-zero values
retrieved from first and second 3-tuple (pointed to by s1.sp and s2.sp
respectively) are same then we have added two non-zero values vala
and valb. The row number rowa, column number cola and vala + valb
is then copied to the target 3-tuple poited to by result.

(b) If column number of first 3-tuple is less than the column number of
second 3-tuple, then we have added the information about the ith non-
zero value of first 3-tuple to the target 3-tuple.

(c) If column number of first 3-tuple is greater than the column number of
second 3-tuple, then we have added the information about the jth non-
zero value of second 3-tuple to the target 3-tuple.

(d) If row number of first 3-tuple is less than the row number of second 3-
tuple, then we have added the information about the ith non-zero value
of first 3-tuple to the target 3-tuple.

(e) If row number of first 3-tuple is greater than the row number of second
3-tuple, then we have added the information about the jth non-zero
value of second 3-tuple to the target 3-tuple.

Finally, the total number of rows, columns and non-zero values that the
target 3-tuple holds is stored in the zeroth row of the target 3-tuple (pointed
to by result). The function display_result() displays result of the addition
operation.

Linked Representation of a Sparse Matrix
Representing a sparse matrix as an array of 3-tuples suffers from one
important limitation. When we carry out addition or multiplication it is not
possible to predict beforehand how many elements in the resultant matrix
would be non-zero. As a result, it is not possible to predict the size of the
resultant matrix beforehand. Instead of an array we can represent the sparse
matrix in the form of a linked list.

In the linked list representation, a separate list is maintained for each
column as well as each row of the matrix, i.e., if the matrix is of size 3 x 3,
then there would be 3 lists for 3 columns and 3 lists for 3 rows. A node in a
list stores the information about the non-zero element of the sparse matrix.



The head node for a column list stores the column number, a pointer to the
node, which comes first in the column, and a pointer to the next column
head node. Thus, the structure for column head node would be as shown
below:

struct cheadnode
{

struct node *down;
int colno;
cheadnode *next;

}

A head node for a row list stores, a pointer to the node, which comes first in
the row list, and a pointer to the next row head node. The structure for row
head node would be as shown below:

structure rheadnode
{

rheadnode *next;
int rowno;
struct node *right;

}

A node on the other hand stores the row number, column number and the
value of the non-zero element of the sparse matrix. It also stores a pointer to
the node that is immediately to the right of the node in the row list as well
as a pointer to the node that is immediately below the node in the column
list. The structure for a node would be as shown below:

struct node
{

int row, col, val;
node *down;
node *right;

};

In addition to this a special node is used to store the total number of rows,
total number of columns, a pointer to the first-row head node and a pointer
to the first-column head node. The information stored in this special node is



used for traversing the list. The structure of this special node would be as
shown below:

struct spmat
{

rheadnode *firstrow;
int noofrows, noofcols;
cheadnode *firstcol;

};

If a particular column list is empty then the field down of the column head
node would be NULL. Similarly, if a row list is empty then the field right
of the row head node would be empty. If a node is the last node in a
particular column list or a particular row list then the field down or the field
right of the node would be NULL.

Figure 4-2 gives pictorial representation of linked list of a sparse matrix of
size 3 x 3.

Figure 4-2. Linked Representation of a sparse matrix.

Other Forms of a Sparse Matrix
A square sparse matrix can be of following types:

Diagonal Where the non-zero elements are stored on the
leading diagonal of the matrix.



Tridiagonal Where the non-zero elements are placed below or
above the leading diagonal.

Lower Triangular Where the non-zero elements are placed below the
leading diagonal.

Upper Triangular Where the non-zero elements are placed above the
leading diagonal.

Figure 4-3 illustrates these four matrices.

Figure 4-3. Different forms of Sparse matrices.

Chapter Bullets



Summary of chapter

(a) If many elements from a matrix have a value 0 then the matrix is known
as a sparse matrix.

(b) A common way of representing non-zero elements of a sparse matrix is
the 3-tuple form.

(c) Sparse matrix can be represented using either an array or a linked list.

(d) A square spare matrix may take the form of a Diagonal, Tridiagonal,
Lower Triangular or Upper Triangular matrix.

Check Your Progress

Exercise - Level I

[A] Pick up the correct alternative for each of the following questions:

(a) A matrix is called sparse when

(1) Most of its elements are non-zero
(2) Most of its elements are zero
(3) All of its elements are non-zero
(4) None of the above

(b) In the linked representation of a sparse matrix the head node for a
column list stores

(1) A pointer to the next column head node
(2) A pointer to the first node in column list
(3) Column number
(4) All of the above

(c) A sparse matrix can be lower-triangular matrix

(1) When all the non-zero elements lie only on the leading diagonal.
(2) When all the non-zero elements lie above leading diagonal.
(3) When all the non-zero elements lie below leading diagonal.



(4) Both (3) and (4)

Sharpen Your Skills

Exercise - Level II

[B] Answer the following:

(a) Write a program to build a sparse matrix as an array. Write functions to
check if the sparse matrix is a square, diagonal, lower triangular, upper
triangular or tridiagonal matrix.

(b) Write a program to subtract two sparse matrices implemented as an
array.

(c) Write a program to build a spare matrix as a linked list. The program
should provide functions for following operations:

(i) Store an element when the row number, column number and the value
is provided.

(ii) Retrieve an element for given row and column of the matrix.
(iii) Add two sparse matrices
(iv) Subtract two sparse matrices

Coding Interview Questions

Exercise Level III

Write a program that carries out multiplication of two sparse matrices
through their 3-tuple form and stores the result in another sparse matrix in
3-tuple form.



Case Scenario Exercise

Linked representation of Sparse Matrix

Write a program that stores sparse matrix in the linked list form. The
skeleton code for this program is given below. You are required to define
different functions declared in the class sparse and the call these functions
from main().

#include <iostream>
using namespace std;
const int MAX1 = 3;
const int MAX2 = 3;
// structure for col head node
struct cheadnode
{

struct node *down;
int colno;
cheadnode *next;

};
// structure for row head node
struct rheadnode
{

rheadnode *next;
int rowno;
struct node * right;

};
// structure for node to store element
struct node
{

int row, col, val;
node *down, *right;

};
// structure for special head node
struct spmat
{

rheadnode *firstrow;
int noofrows, noofcols;



cheadnode *firstcol;
};
class sparse
{

private :
int *sp;
int row;
spmat *smat;
cheadnode *chead[MAX2];
rheadnode *rhead[MAX1];
node *nd;

public :
sparse();
void create_array();
void display(); int count();
void create_triplet (sparse &s);
void create_llist();
void insert (spmat *smat, int r, int c, int v);
void show_llist();
~sparse();

};



Chapter 05
Stacks

Of Wads Of Notes



Why This Chapter Matters?
Be it items in a store, books in a library, or notes in a

bank, the moment they become more than handful
we start stacking them neatly. Similarly, while

maintaining data in an orderly fashion it is placed in
a stack. Stack data structure is used widely for

storing variables, managing function calls,
evaluating arithmetic expressions, etc. Hence it is

important to understand this data structure
thoroughly.



S tack is a data structure in which addition of new element or deletion of
an existing element always takes place at the same end. This end is

known as top of stack. This situation can be compared to a stack of plates
in a cafeteria where every new plate added to the stack is added at the top.
Similarly, every new plate taken off the stack is also from the top of the
stack. When an item is added to a stack, the operation is called push, and
when an item is removed from the stack the operation is called pop. These
operations are shown in Figure 5-1. Because of the nature of push and pop
operations Stack is also called last-in-first-out (LIFO) list.

Figure 5-1. Insertion and deletion of elements in a Stack.

A stack data structure can be maintained as an array or as a linked list. The
following sections discuss these implementations.

Stack as an Array



Stack contains an ordered collection of elements. An array is used to store
ordered list of elements. Hence, a stack can be implemented using an array.
However, we are required to declare the size of the array before using it. So,
when we use it to store elements of a stack the stack can grow or shrink
within the memory reserved for the array. Let us now see a program that
implements a stack using an array.

Honest Solid Code

Program 5-1. Stack as an array

#include <iostream>
using namespace std;
const int MAX = 10;

class stack
{

private :
int arr[MAX];
int top;

public :
stack();
void push (int item);
int pop();

};

// initialises data member
stack :: stack()
{

top = -1;
}

// adds an element to the stack
void stack :: push (int item)
{

if (top == MAX - 1)



{
cout << “Stack is full” << endl;
return;

}
top++;
arr[top] = item;

}

// extracts an element from the stack
int stack :: pop()
{

if (top == -1)
{

cout << “Stack is empty” << endl;
return NULL;

}
int data = arr[top];
top–;
return data;

}

int main()
{

stack s;

s.push (2);
s.push (-4);
s.push (8);
s.push (11);

int n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)



cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;
return 0;

}

Output:
Item popped: 11
Item popped: 8
Item popped: -4
Item popped: 2
Stack is empty

In this program we have defined a class called stack containing push() and
pop() functions. These functions are respectively used to add and delete
items from the top of the stack. The actual storage of stack elements is done
in an array arr. The data member top is an index into this array. It contains
a value where the addition or deletion is going to take place in the array, and
thereby in the stack. To indicate that the stack is empty to begin with, the
variable top is set with a value -1 in the constructor function.

Every time an element is added to stack, it is verified whether such an
addition is possible at all. If it is not, then the message ‘Stack is full’ is
displayed. Since we have declared the array to hold 10 elements, the stack
would be considered full if the value of top becomes equal to 9.

In main() we have called push() function to add 4 elements to the stack.
Then we have removed these elements from the stack by calling the pop()
function. When we call pop() for the 5th time, there are no elements present
in the stack and top has a value -1 in it. Hence the ‘Stack is empty’ gets
displayed.

Stack as a Linked List



In the earlier section we had used arrays to store the elements that get added
to the stack. However, when implemented as an array it suffers from the
basic limitation of an array—that its size cannot be increased or decreased
once it is declared. As a result, one ends up reserving either too much
memory or too less memory for an array and in turn for a stack. This
problem can be overcome if we implement a stack using a linked list.

Each node in the linked list contains the data and a pointer that gives
location of the next node in the list. The pointer to the beginning of the list
serves the purpose of the top of the stack. Figure 5-2 shows the linked list
representation of a stack.

Figure 5-2. Representation of stack as a linked list.

Let us now see a program that implements stack as a linked list.



Honest Solid Code

Program 5-2. Stack as a linked list

#include <iostream>
using namespace std;

class stack
{

private :
struct node
{

int data;
node *link;

} *top;
public :

stack();
void push (int item);
int pop();
~stack();

};

// initialises data member
stack :: stack()
{

top = NULL;
}

// adds a new node to the stack as linked list
void stack :: push (int item)
{

node *temp;
temp = new node;

if (temp == NULL)
cout << “Stack is full” << endl;

temp -> data = item;
temp -> link = top;
top = temp;



}

// pops an element from the stack
int stack :: pop()
{

if (top == NULL)
{

cout << “Stack is empty” << endl;
return NULL;

}

node *temp;
int item;

temp = top;
item = temp -> data;
top = top -> link;

delete temp;
return item;

}

// deallocates memory
stack :: ~stack()
{

if (top == NULL)
return;

node *temp;
while (top != NULL)
{

temp = top;
top = top -> link;
delete temp;

}
}

int main()
{

stack s;



s.push (14);
s.push (-3);
s.push (18);
s.push (29);
s.push (31);
s.push (16);

int n = s.pop();

if (n != NULL)
cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;

n = s.pop();
if (n != NULL)

cout << “Item popped: ” << n << endl;

return 0;
}

Output:
Item popped: 16
Item popped: 31
Item popped: 29

Here we have designed a class called stack. Its data member top is a
pointer to the structure node. Initially, top is set to NULL in the constructor
to indicate that the stack is empty. In every call to the function push() we
are creating a new node dynamically. As long as there is enough memory
available for dynamic allocation temp would never become NULL. If value
of temp happens to be NULL then that would be a stage where stack would
become full.

After, creating a new node, the data member top should point to the newly
created item of the list. Hence, we have assigned the address of this new
node to top.



In the pop() function, first we are checking whether or not a stack is empty.
If so, then a message ‘Stack is empty’ gets displayed. If the stack is not
empty then the topmost item gets removed from the list.

Applications of Stacks
Stacks are often used is in evaluation of arithmetic expression. An
arithmetic expression consists of operands and operators. The operands can
be constant or variables. The operators used in an arithmetic expression can
be +, -, * and /.

While writing an arithmetic expression, the operator is placed between two
operands as shown in the examples below.

A + B * C
A * B - C
A + B / C - D
A $ B + C

This way of representing arithmetic expressions is called infix notation.
While evaluating an infix expression usually the following operator
precedence is used:

- Highest priority: Exponentiation ($)
- Next highest priority: Multiplication (*) and Division (/)
- Lowest priority: Addition (+) and Subtraction (-)

If we wish to override these priorities, we can do so by using a pair of
parentheses as shown below.

(A + B) * C
A * (B - C)
(A + B) / (C - D)

The expressions within a pair of parentheses are always evaluated earlier
than other operations.

To make evaluation of an arithmetic expression easy, a polish
mathematician Jan Lukasiewicz suggested a notation called Polish notation.
As per this notation, an expression in infix form can be converted to either
prefix or postfix form and then evaluated. In prefix notation the operator



comes before the operands. In postfix notation, the operator follows the two
operands. These forms are shown below.

A + B - Infix form
+ A B - Prefix form
A B + - Postfix form

The prefix and postfix expressions have three features:

- The operands maintain the same order as in the equivalent infix
expression

- Parentheses are not needed to designate the expression unambiguously.
- While evaluating the expression the priority of the operators is irrelevant.

The stack data structure is used while carrying out the conversion of an
expression given in one form to another.

Infix to Postfix Conversion
Let us now see a program that converts an arithmetic expression given in an
infix form to a postfix form.

Honest Solid Code

Program 5-3. Infix to Postfix conversion

#include <iostream>
#include <string.h>
#include <ctype.h>
using namespace std;
const int MAX = 50;

class infix
{

private :

char target[MAX], stack[MAX];
char *s, *t;



int top;

public :

infix();
void setexpr (char *str);
void push (char c);
char pop();
void convert();
int priority (char c);
void show();

};

// initialises data members
infix :: infix()
{

top = -1;
strcpy (target, “”);
strcpy (stack, “”);
t = target;
s = “”;

}

// sets s to point to given expr.
void infix :: setexpr (char *str)
{

s = str;
}

// adds an operator to the stack
void infix :: push (char c)
{

if (top == MAX)
cout << “Stack is full” << endl;

else
{

top++;
stack[top] = c;

}



}

// pops an operator from the stack
char infix :: pop()
{

if (top == -1)
{

cout << “Stack is empty” << endl;
return -1;

}
else
{

char item = stack[top];
top–;
return item;

}
}

// converts the given expr. from infix to postfix form
void infix :: convert()
{

while (*s)
{

if (*s == ’ ’ || *s == ’\t’)
{

s++;
continue;

}

if (isdigit (*s) || isalpha (*s))
{

while (isdigit (*s) || isalpha (*s))
{

*t = *s;
s++;
t++;

}
}



if (*s == ’(’)
{

push (*s);
s++;

}

char opr;
if (*s == ’*’ || *s == ’+’ || *s == ’/’ || *s == ’%’ || *s == ’-’ ||

*s == ’$’)
{

if (top != -1)
{

opr = pop();
while (priority (opr) >= priority (*s))
{

*t = opr;
t++;
opr = pop();

}
push (opr);
push (*s);

}
else

push (*s);
s++;

}

if (*s == ’)’)
{

opr = pop();
while ((opr) != ’(’)
{

*t = opr;
t++;
opr = pop();

}
s++;

}



}

while (top != -1)
{

char opr = pop();
*t = opr;
t++;

}
*t = ’\0’;

}

// returns the priority of an operator
int infix :: priority (char c)
{

if (c == ’$’)
return 3;

if (c == ’*’ || c == ’/’ || c == ’%’)
return 2;

else
{

if (c == ’+’ || c == ’-’)
return 1;

else
return 0;

}
}

// displays the postfix form of given expr.
void infix :: show()
{

cout << target << endl;
}

int main()
{

char expr[MAX];
infix q;

cout << “Enter an expression in Infix form: ” << endl;



cin.getline (expr, MAX);

q.setexpr (expr);
q.convert();

cout << “The Postfix expression is: ” << endl;
q.show();

return 0;
}

Output:
Enter an expression in infix form:
4 $ 2 * 3 - 3 + 8 / 4 / (1 + 1)
Stack is empty
The postfix expression is:
42$3*3-84/11+/+

This program contains a class called infix. The data members target and
stack are used to store the postfix string and to maintain the stack
respectively. The char pointers s and t are used to store intermediate results
while converting an infix expression to a postfix form. The data member
top points to the top of the stack.

During program execution when user enters an arithmetic expression the
function setexpr() assigns the base address of the string to char pointer s.

Next, the function convert() gets called. This function converts the given
infix expression to postfix expression. This function scans every character
of the string in a while loop and performs one of the following operations
depending on the type of character scanned.

(a) If the character scanned happens to be a space, then that character is
skipped.

(b) If character scanned is a digit or an alphabet, it is added to the target
string pointed to by t.

(c) If the character scanned is a closing parenthesis then it is pushed to the
stack by calling push() function.



(d) If the character scanned is an operator, then firstly, the topmost element
from the stack is retrieved. Through a while loop, the priorities of the
character scanned (i.e., *s) and the character popped opr are compared.
Then following steps are performed:

(i) If opr has higher or same priority as the character scanned, then opr
is added to the target string.

(ii) If opr has lower precedence than the character scanned, then the loop
is terminated. opr is pushed back to the stack. Then, the character
scanned (*s) is also pushed to the stack.

(e) If the character scanned is an opening parenthesis, then the operators
present in the stack are popped through a loop. The loop continues till it
does not encounter a closing parenthesis. The popped operators are
added to the target string pointed to by t.

In the convert() function we have called functions push(), pop(),
priority(). The push() function adds a character to the stack, whereas the
pop() function removes the topmost item from the stack. The priority()
function returns the priority of operators used in the infix expression. $
(exponentiation) has the highest precedence, followed by *, / and +, -. The
function returns integer 3 for $, 2 for * or /, 1 for + or - and 0 for any other
character.

The while loop in convert() gets terminated if the string s is exhausted. By
then some operators may still be in the stack. These operators should get
added to the postfix string. This is done once the control reaches outside the
while loop in the convert() function. Lastly, the converted expression is
displayed using the show() function.

The steps performed in the conversion of a sample infix expression 4 $ 2 *
3 - 3 + 8 / 4 / (1 + 1) to a postfix expression are shown in Table 5-1.



Table 5-1. Conversion of Infix to Postfix form.

Postfix to Prefix Conversion
Let us now see a program that converts an expression in postfix form to a
prefix form.



Honest Solid Code

Program 5-4. Postfix to Prefix conversion

#include <iostream>
#include <string.h>
using namespace std;
const int MAX = 50;

class postfix
{

private :

char stack[MAX][MAX], target[MAX];
char temp1[2], temp2[2];
char str1[MAX], str2[MAX], str3[MAX];
int i, top;

public :

postfix();
void setexpr (char *c);
void push (char *str);
void pop (char *a);
void convert();
void show();

};

// initialises data members
postfix :: postfix()
{

i = 0;
top = -1;
strcpy (target, “”);

}

// copies given expression to target string



void postfix :: setexpr (char *c)
{

strcpy (target, c);
}

// adds an operator to the stack
void postfix :: push (char *str)
{

if (top == MAX - 1)
cout << endl << “Stack is full”;

else
{

top++;
strcpy (stack[top], str);

}
}

// pops an element from the stack
void postfix :: pop (char *a)
{

if (top == -1)
cout << “Stack is empty” << endl;

else
{

strcpy (a, stack[top]);
top–;

}
}

// converts given expression to prefix form
void postfix :: convert()
{

while (target[i] != ’\0’)
{

// skip whitespace, if any
if (target[i] == ’ ’)

i++;
if(target[i] == ’%’ || target[i] == ’*’ ||



target[i] == ’-’ || target[i] == ’+’ ||
target[i] == ’/’ || target[i] == ’$’)

{
pop (str2);
pop (str3);
temp1[0] = target[i];
temp1[1] = ’\0’;
strcpy (str1, temp1);
strcat (str1, str3);
strcat (str1, str2);
push (str1);

}
else
{

temp1[0] = target[i];
temp1[1] = ’\0’;
strcpy (temp2, temp1);
push (temp2);

}
i++;

}
}

// displays the prefix form of expression
void postfix :: show()
{

char *temp = stack[0];
while (*temp)
{

cout << *temp << “ ”;
temp++;

}
cout << endl;

}

int main()
{

char expr[MAX];



cout << “Enter an expression in Postfix form: ” << endl;
cin.getline (expr, MAX);

postfix q;
q.setexpr (expr);
q.convert();

cout << “The Prefix expression is: ” << endl;
q.show();

return 0;
}

Output:
Enter an expression in postfix form:
4 2 $ 3 * 3 - 8 4 / 1 1 + / +
The Prefix expression is:
+ - * $ 4 2 3 3 / / 8 4 + 1 1

In this program the class postfix contains character arrays like temp1,
temp2, str1, str2, str3 to store the intermediate results. The character
arrays stack and target are used to maintain the stack and to store the final
string in the prefix form respectively.

In the convert() function the string containing expression in postfix form is
scanned through a while loop till the string target is not exhausted.
Following steps are performed depending on the type of character scanned.

(a) If the character scanned is a space, then that character is skipped.

(b) If the character scanned contains a digit or an alphabet, it is pushed to
the stack by calling push() function.

(c) If the character scanned contains an operator, then the topmost two
elements are popped from the stack. These two elements are then stored
in the array temp1. A temporary string temp2 containing the operator
and the two operands is formed. This temporary string is then pushed on
the stack.

The converted prefix form is stored at the 0th position in the stack. Finally,
the show() function displays this prefix form. The steps performed in the



conversion of a sample postfix expression 4 2 $ 3 * 3 - 8 4 / 1 1 + / + to its
equivalent prefix expression is shown in Table 5-2.

Table 5-2. Conversion of Infix to Postfix form.

Other Inter-Conversions
We have seen conversion of infix to postfix form and postfix to prefix form.
It is also possible to carry out other conversions as well. Figure 5-3



summarizes the operations to be performed to carry out these inter-
conversions.

Figure 5-3. Summary of inter-conversion of expressions.

Evaluation of Postfix Expression



The virtue of postfix notation is that it enables easy evaluation of
expressions. To begin with, the need for parentheses is eliminated.
Secondly, the priority of the operators is no longer relevant. The expression
can be evaluated by making a left to right scan, stacking operands, and
evaluating operators using operands popped from the stack and finally
placing the result onto the stack. This evaluation is much simpler than
attempting a direct evaluation of infix notation. Let us now see a program to
evaluate a postfix expression.

Honest Solid Code

Program 5-5. Evaluation of Postfix expression

#include <iostream>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
using namespace std;
const int MAX = 50;

class postfix
{

private :

int stack[MAX];
int top, nn;
char *s;

public :

postfix();
void setexpr (char *str);
void push (int item);
int pop();
void calculate();
void show();

};



// initialises data members
postfix :: postfix()
{

top = -1;
}

// sets s to point to the given expr.
void postfix :: setexpr (char *str)
{

s = str;
}

// adds digit to the stack
void postfix :: push (int item)
{

if (top == MAX - 1)
cout << “Stack is full” << endl;

else
{

top++;
stack[top] = item;

}
}

// pops digit from the stack
int postfix :: pop()
{

if (top == -1)
{

cout << “Stack is empty” << endl;
return NULL;

}
int data = stack[top];
top–;
return data;

}

// evaluates the postfix expression
void postfix :: calculate()



{
int n1, n2, n3;
while (*s)
{

// skip whitespace, if any
if (*s == ’ ’ || *s == ’\t’)
{

s++;
continue;

}

// if digit is encountered
if (isdigit (*s))
{

nn = *s - ’0’;
push (nn);

}
else
{

// if operator is encountered
n1 = pop();
n2 = pop();
switch (*s)
{

case ’+’ :
n3 = n2 + n1;
break;

case ’-’ :
n3 = n2 - n1;
break;

case ’/’ :
n3 = n2 / n1;
break;

case ’*’ :
n3 = n2 * n1;
break;

case ’%’ :



n3 = n2 % n1;
break;

case ’$’ :
n3 = (int) pow ((double) n2 , (double) n1);
break;

default :
cout << “Unknown operator” << endl;
exit (1);

}
push (n3);

}
s++;

}
}

// displays the result
void postfix :: show()
{

nn = pop ();
cout << “Result is: ” << nn << endl;

}

int main()
{

char expr[MAX];

cout << “Enter Postfix expression to be evaluated: ” << endl;
cin.getline (expr, MAX);

postfix q;

q.setexpr (expr);
q.calculate();
q.show();

return 0;
}

Output:
Enter postfix expression to be evaluated:



4 2 $ 3 * 3 - 8 4 / 1 1 + / +
Result is: 46

In this program the class postfix contains an integer array stack, to store the
intermediate results of the operations and top to store the position of the
topmost element in the stack. The evaluation of the expression gets
performed in the calculate() function.

During execution the user enters an arithmetic expression in postfix form.
In the calculate() function, this expression gets scanned character by
character. If the character scanned is a blank space, then it is skipped. If the
character scanned is an operand, then first it is converted to a digit form
(from string form), and then it is pushed onto the stack. If the character
scanned is an operator, then the top two elements from the stack are popped,
an arithmetic operation is performed between them and the result is then
pushed back onto the stack. These steps are repeated as long as the string s
is not exhausted. The show() function displays the final result. These steps
can be better understood if you go through the evaluation of a sample
postfix expression shown in Table 5-3.



Table 5-3. Evaluation of Postfix expression.

Chapter Bullets

Summary of chapter



(a) Stack data structure is a LIFO list in which addition of new elements
and deletion of existing elements takes place at the same end.

(b) Addition of a new element to a stack is called push operation.

(c) Deletion of an existing element from a stack is called pop operation.

(d) Stack data structure can be implemented using an array or a linked list.

(e) If stack is implemented as a linked list, push operation is like adding a
new node at the beginning of the linked list.

(f) If stack is implemented as a linked list, pop operation is like deleting an
existing node from the beginning of the linked list.

(g) Stack data structure has many applications like keeping track of function
calls, storing local variable, evaluation of arithmetic expression, etc.

Check Your Progress

Exercise - Level I

[A] Fill in the blanks:

(a) A stack is a data structure in which addition of new element or deletion
of an existing element always takes place at an end called ____.

(b) The data structure stack is also called____list.

(c) In____notation the operator precedes the two operands.

(d) In____notation the operator follows the two operands.

[B] Pick up the correct alternative for each of the following questions:

(a) Adding an element to the stack means
(1) Placing an element at the front end
(2) Placing an element at the top
(3) Placing an element at the rear end
(4) None of the above



(b) Pushing an element to a stack means
(1) Removing an element from the stack
(2) Searching a given element in the stack
(3) Adding a new element to the stack
(4) Sorting the elements in the stack

(c) Popping an element from the stack means
(1) Removing an element from the stack
(2) Searching a given element in the stack
(3) Adding a new element to the stack
(4) Sorting the elements in the stack

(d) The expression A B *
(1) is an infix expression
(2) is a postfix expression
(3) is a prefix expression
(4) is a stack expression

Sharpen Your Skills

Exercise - Level II

[C] Transform the following infix expressions into their equivalent postfix
expressions:

(A - B) * (D / E)
(A + B ^ D) / (E - F) + G
A * (B + D) / E - F * (G + H / K)
(A + B) * (C - D) $ E * F
(A + B) * (C $ (D - E) + F) / G) $ (H - J)

[D] Transform the following infix expressions into their equivalent prefix
expressions:

(A - B) * (D / E)
(A + B ^ D) / (E - F) + G
A * (B + D) / E - F * (G + H / K)



[E] Transform each of the following prefix expression to infix.

+ A - B C
+ + A - * $ B C D / + E F * G H I
+ - $ A B C * D ** E F G

[F] Transform each of the following postfix expression to infix.

A B C + -
A B - C + D E F - + $
A B C D E - + $ * E F * -

Coding Interview Questions

Exercise Level III

[G] Write programs for the following:

(a) Copying contents of one stack to another.

(b) To check whether in a string containing an arithmetic expression, the
opening and closing parenthesis are well- formed or not.

Case Scenario Exercise

Prefix to postfix and infix forms

Write a program to convert an arithmetic expression in prefix form to
equivalent infix and postfix forms. Refer Figure 5-4 for the steps to be
carried out in each of these conversions.



Chapter 06
Queues

Await Your Turn



Why This Chapter Matters?
Whether it is a railway reservation counter, a movie
theatre or print jobs submitted to a network printer

there is only one way to bring order to chaos—form
a queue. If you await your turn patiently, there is a

more likelihood that you would get a better service.
In a computer system too there are queues of tasks
(programs) waiting for the printer, or for access to
disk storage, or for usage of CPU, etc. Understand

this chapter thoroughly to be able to implement
queues.



Queue is a linear data structure that permits insertion of new element at
one end and deletion of an element at the other end. The end at which

the deletion of an element takes place is called front, and the end at which
insertion of a new element takes place is called rear.

The first element that gets added into the queue is the first one to get
removed from the list. Hence, queue is also referred to as first-in-first-out
(FIFO) list. The name ‘queue’ comes from the everyday use of the term.
Consider a queue of people waiting at a bus stop. Each new person who
comes takes his or her place at the end of the line, and when the bus arrives,
the people at the front of the line board first. The first person in the line is
the first person to leave it. Figure 6-1 gives a pictorial representation of a
queue.

Figure 6-1. Pictorial representation of a queue.

In Figure 6-1, 34 is the first element and 42 is the last element added to the
queue. Similarly, 34 will be the first element to get removed and 42 will be
the last element to get removed from the queue.

Queue, being a linear data structure can be represented using either an array
or a linked list. These implementations are discussed in following sections.

Queue as an Array
Representing a queue as an array would have the same problem that we
discussed in case of stack in Chapter 5. An array can store a fixed number
of elements. Queue, on the other hand keeps on changing as we remove
elements from the front end or add new elements at the rear end. Declaring
an array with a maximum size would solve this problem. The maximum



size should be large enough for a queue to expand or shrink. Let us now see
a program that implements queue as an array.

Honest Solid Code

Program 6-1. Implementation of queue as an array

#include <iostream>
using namespace std;
const int MAX = 10;

class queue
{

private :
int arr[MAX];
int front, rear;

public :
queue();
void addq (int item);
int delq();

};

// initialises data members
queue :: queue()
{

front = -1;
rear = -1;

}
// adds an element to the queue
void queue :: addq (int item)
{

if (rear == MAX - 1)
{

cout << “Queue is full” << endl;
return;



}

rear++;
arr[rear] = item;

if (front == -1)
front = 0;

}

// removes an element from the queue
int queue :: delq()
{

int data;

if (front == -1)
{

cout << “Queue is Empty” << endl;
return NULL;

}
data = arr[front];
arr[front] = 0;

if (front == rear)
front = rear = -1;

else
front++;

return data;
}

int main()
{

queue q;

q.addq (34);
q.addq (12);
q.addq (53);
q.addq (61);

int n;
n = q.delq();
if (n != NULL)



cout << “Item deleted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item deleted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item deleted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item deleted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item deleted: ” << n << endl;
}

Output:

Item deleted: 34
Item deleted: 12
Item deleted: 53
Item deleted: 61
Queue is Empty

Here we have designed a class called queue. It contains an array arr to
store queue elements and variables front and rear to monitor the two ends
of the queue. The initial values of front and rear are set to -1, through the
constructor to mark the queue as empty. The functions addq() and delq()
are used to perform addition and deletion operations on the queue.

In addq() firstly it is ascertained whether an addition is possible or not.
Since the array indexing begins with 0 the maximum number of elements
that can be stored in the queue are MAX - 1. If these many elements are
already present in the queue then it is reported to be full. If an element can
be added to the queue then value of rear is incremented and the new item is
stored in the array.



If the item being added to the queue is the first element (i.e., if variable
front has a value -1) then as soon as the item is added to the queue front is
set to 0 indicating that the queue is no longer empty.

The addition of an element to the queue is illustrated in Figure 6-2.

Figure 6-2. Addition of an element to a queue.

Let us now see how the delq() function works. Before deleting an element
from the queue, it is first ascertained whether there are any elements
available for deletion. If not, then the queue is reported as empty.
Otherwise, an element is deleted form arr[front].

Imagine a case where we add 10 elements to the queue. Value of rear
would now be 9. Suppose we have not deleted any elements from the
queue, then at this stage the value of front would be 0. Now suppose we go
on deleting elements from the queue. When the tenth element is deleted, the
queue would fall empty. To make sure that another attempt to delete should
be met with an ‘empty queue’ message, front and rear both are reset to -1
to indicate emptiness of the queue.

The deletion of elements from a queue is illustrated in Figure 6-3.



Figure 6-3. Deletion of elements from a queue.

Our program has got one limitation. Suppose we go on adding elements to
the queue till the entire array gets filled. At this stage the value of rear
would be MAX - 1. Now if we delete 5 elements from the queue, at the end
of these deletions the value of front would be 5. If now we attempt to add a
new element to the queue, then it would be reported as full even though in
reality the first five slots of the queue are empty. To overcome this situation,
we can implement a queue as a circular queue, which would be discussed
later in this chapter.



Queue as a Linked-List
Queue can also be represented using a linked list. Linked lists do not have
any restrictions on the number of elements it can hold. Space for the
elements in a linked list is allocated dynamically, hence it can grow as long
as there is enough memory available for dynamic allocation. Figure 6-4
shows the representation of a queue as a linked list.

Figure 6-4. Representation of a queue as a linked list.

Let us now see a program that implements the queue as a linked list.

Honest Solid Code

Program 6-2. Implementation of queue as a linked list

#include <iostream>
using namespace std;

class queue
{

private :

struct node
{

int data;
node *link;

} *front, *rear;



public :

queue();
void addq (int item);
int delq();
~queue();

};

// initialises data member
queue :: queue()
{

front = rear = NULL;
}

// adds an element to the queue
void queue :: addq (int item)
{

node *temp;

temp = new node;
if (temp == NULL)

cout << “Queue is full” << endl;

temp -> data = item;
temp -> link = NULL;

if (front == NULL)
{

rear = front = temp;
return;

}

rear -> link = temp;
rear = rear -> link;

}

// removes an element from the queue
int queue :: delq()
{

if (front == NULL)
{



cout << “Queue is empty” << endl;
return NULL;

}

node *temp;
int item;

item = front -> data;
temp = front;
front = front -> link;
delete temp;
return item;

}

// deallocates memory
queue :: ~queue()
{

if (front == NULL)
return;

node *temp;
while (front != NULL)
{

temp = front;
front = front -> link;
delete temp;

}
}

int main()
{

queue q;

q.addq (34);
q.addq (12);
q.addq (53);
q.addq (61);

int n = q.delq();
if (n != NULL)



cout << “Item extracted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item extracted: ” << n << endl;

n = q.delq();
if (n != NULL)

cout << “Item extracted: ” << n << endl;
}

Output:

Item deleted: 34
Item deleted: 12
Item deleted: 53

In this program the class queue contains two data members front and rear,
both pointers to the structure node. To begin with, the queue is empty hence
both front and rear are set to NULL in the constructor of the queue class.

The addq() function adds a new element at the rear end of the list. If the
element added is the first element, then both front and rear are made to
point to the new node. However, if the element added is not the first
element then only rear is made to point to the new node, whereas front
continues to point to the first node in the list.

The delq() function removes an element from the list which is at the front
end of the list. Removal of an element from the list actually deletes the node
to which front is pointing. After deletion of a node, front is made to point
to the next node that comes in the list, whereas rear continues to point to
the last node in the list.

When the program terminates, the object q dies. As a result, the destructor
is called. In the destructor the memory allocated for the existing nodes in
the list is de-allocated.

Circular Queue
The queue that we implemented using an array suffers from one limitation.
In that implementation there is a possibility that the queue is reported as full



(since rear has reached the end of the array), even though in actuality there
might be empty slots at the beginning of the queue.

To overcome this limitation, we can implement the queue as a circular
queue. Here as we go on adding elements to the queue and reach the end of
the array, the next element is stored in the first slot of the array (provided it
is free).

More clearly, suppose an array arr of n elements is used to implement a
circular queue. As we go on adding elements to the queue we will reach
arr[n-1]. We cannot add any more elements to the queue as we have
reached the end of the array. If some elements in the queue are deleted the
slots at the beginning of the queue will fall vacant. If now any new elements
are to be added to the queue, instead of reporting that the queue is full we
fill the slots at the beginning of the array with new elements being added to
the queue.

In short, just because we have reached the end of the array the queue would
not be reported as full. The queue would be reported as full only when all
the slots in the array stand occupied.

Let us now see a program that performs the addition and deletion operation
on a circular queue.

Honest Solid Code

Program 6-3. Implementation of circular queue

#include <iostream>
using namespace std;
const int MAX = 8;

class queue
{

private :

int arr[MAX];
int front, rear;



public :

queue();
void addq (int item);
int delq();
void display();

};

// initialises data member
queue :: queue()
{

front = rear = -1;
for (int i = 0; i < MAX; i++)

arr[i] = 0;
}

// adds an element to the queue
void queue :: addq (int item)
{

if ((rear == MAX - 1 && front == 0) || (rear + 1 == front))
{

cout << “Queue is full” << endl;
return;

}

if (rear == MAX - 1)
rear = 0;

else
rear++;

arr[rear] = item;

if (front == -1)
front = 0;

}

// removes an element from the queue
int queue :: delq()
{

int data;



if (front == -1)
{

cout << “Queue is empty” << endl;
return NULL;

}

data = arr[front];
arr[front] = 0;

if (front == rear)
{

front = -1;
rear = -1;

}
else
{

if (front == MAX - 1)
front = 0;

else
front++;

}
return data;

}

// displays element in a queue
void queue :: display()
{

for (int i = 0; i < MAX; i++)
cout << arr[i] << “ ”;

cout << endl;
}

int main()
{

queue q;

q.addq (14);
q.addq (22);
q.addq (13);



q.addq (-6);
q.addq (25);
q.addq (21);
q.addq (17);
q.addq (18);

cout << “Elements in the circular queue: ” << endl;
q.display();

int i = q.delq();
cout << “Item deleted: ” << i << endl;

i = q.delq();
cout << “Item deleted: ” << i << endl;

cout << “Elements in the circular queue after deletion: ” << endl;
q.display();
q.addq (9);
q.addq (20);

cout << “Elements in the circular queue after addition: ” << endl;
q.display();

}

Output:

Elements in the circular queue:
14    22    13    -6    25    21    17    18
Item deleted: 14
Item deleted: 22
Elements in the circular queue after deletion:
0    0    13    -6    25    21    17    18
Elements in the circular queue after addition:
9    20    13    -6    25    21    17    18

In this program the class queue contains an array arr to store the elements
of the circular queue. The functions addq() and delq() are used to add and
remove the elements from the queue respectively. The function display()
displays the existing elements of the queue. The initial values of front and
rear are set to -1, to mark the queue as empty.



In main(), first we have called the addq() function 8 times to insert
elements in the circular queue. In this function, following cases are
considered before adding an element to the queue.

(a) First, we have checked whether or not the array is full. The message
‘Queue is full’ gets displayed if front and rear are in adjacent locations
with rear following the front.

(b) If the value of front is -1 then it indicates that the queue is empty and
the element to be added would be the first element in the queue. The
values of front and rear in such a case are set to 0 and the new element
gets placed at the 0th position.

(c) It may also happen that some of the positions at the front end of the
array are vacant. This happens if we have deleted some elements from
the queue, when the value of rear is MAX - 1 and the value of front is
greater than 0. In such a case the value of rear is set to 0 and the
element to be added is added at this position.

(d) The element is added at the rear position in case the value of front is
either equal to or greater than 0 and the value of rear is less than MAX
- 1.

Thus, after adding 8 elements the value of front and rear become 0 and 7
respectively. The display() function displays the elements in the queue.
Figure 6-5 shows the circular queue after adding 8 elements.



Figure 6-5. Circular queue after addition of 8 elements.

Next we have called delq() function twice to remove 2 elements from the
queue. The following conditions are checked while deleting an element.

(a) First, we have checked whether or not the queue is empty. The value of
front in our case is 7, hence an element at the front position would get
deleted.

(b) Next, we have checked if the value of front has become equal to rear. If
it has, then the element we wish to remove is the only element of the
queue. On removal of this element the queue would become empty and
hence the values of front and rear are set to -1.

On deleting an element from the queue, the value of front is set to 0 if it is
equal to MAX - 1. Otherwise, front is simply incremented by 1. Figure 6-6
shows the circular queue after deleting two elements from the queue that
was earlier filled with 8 elements.

Figure 6-6. Circular queue after deleting two elements.

Deque
The word deque is a short form of double-ended queue and defines a data
structure in which items can be added or deleted at either the front or rear
end, but no changes can be made elsewhere in the list. Thus, a deque is a



generalization of both a stack and a queue. Figure 6-7 shows the
representation of a deque.

Figure 6-7. Representation of a deque.

There are two variations of a deque—an Input-restricted deque and an
Output-restricted deque.

An Input restricted deque restricts the insertion of elements at one end only,
but the deletion of elements can be done at both the ends of a queue.

On the contrary, an output-restricted deque, restricts the deletion of
elements at one end only, and allows insertion to be done at both the ends of
a deque.

Priority Queue
A priority queue is a collection of elements where the elements are stored
according to their priority levels. The order in which the elements should
get added or removed is decided by the priority of the element. Following
rules are applied to maintain a priority queue.

(a) The element with a higher priority is processed before any element of
lower priority.

(b) If there are elements with the same priority, then the element added first
in the queue would get processed.

Priority queues are used for implementing job scheduling by the operating
system where jobs with higher priorities are to be processed first. Another



application of priority queues is simulation systems where priority
corresponds to event times.

Chapter Bullets

Summary of chapter

(a) Queue data structure is a FIFO list in which addition of new elements
takes place at the rear end of the queue and deletion of existing elements
takes place at its front end.

(b) Queue data structure can be implemented using an array or a linked list.

(c) If queue is implemented as a linked list, then addition operation is like
adding a new node at the end of the linked list.

(d) If queue is implemented as a linked list, then deletion operation is like
deleting an existing node from the beginning of the linked list.

(e) There exist special types of queues like deque and priority queues.

Check Your Progress

Exercise - Level I

[A] Fill in the blanks:

(a) For a queue built using an array and containing n elements, the value of
front would be____and rear would be____.

(b) In a circular queue implemented using an array and holding 5 elements,
if front is equal to 3 and rear is equal to 4, then the new element would
get placed at position.



(c) A queue is called ____ when addition as well as deletion of elements
can take place at both the ends.

(d) An____is a queue in which insertion of an element takes place at one
end only but deletion occurs at both the ends.

(e) An____is a queue in which insertion of an element takes place at both
the ends but deletion occurs at one end only.

Sharpen Your Skills

Exercise - Level II

[B] Choose the correct alternative for the following:

(a) Queue is a
(1) Linear data structure
(2) Non-linear data structure
(3) Both (1) and (2)
(4) None of the above

(b) The end at which a new element gets added to a queue is called
(1) front
(2) rear
(3) top
(4) bottom

(c) The end from which an element gets removed from the queue is called
(1) front
(2) rear
(3) top
(4) bottom

[C] Which of the following applications would be suitable for a queue?
(1) A program is to keep track of patients as they check into a clinic,

assigning them to doctors on a first-come, first-served basis.
(2) An inventory of parts is to be processed by part number.



(3) A dictionary of words used by spelling checker is to be created.
(4) Customers are to take numbers at a bakery and be served in order

when their numbers come up.

Coding Interview Questions

Exercise Level III

[D] Write programs for the following:

(a) Write a program to represent a deque using a linked list. Also write
functions to add and delete elements from the deque.

(b) Write a menu-driven program to simulate processing of batch jobs by a
computer system. The scheduling of these jobs should be handled using
a priority queue. The program should allow user to add or remove items
from the queue. It should also display current status i.e., the total
number of items in the queue.

(c) Write a program to copy one queue to another when the queue is
implemented as a linked list.

Case Scenario Exercise

Priority Queues

Suppose there are several jobs to be performed with each job having a
priority value of 1, 2, 3, 4, etc. Write a program that receives the job
descriptions and the priorities. Create as many queues as the number of
priorities and queue up the jobs into appropriate queues. For example,
suppose the priorities are 1, 2, 3, and 4 and the data to be entered is as
follows:

ABC, 2, XYZ, 1, PQR, 1, RTZ, 3, CBZ, 2, QQQ, 3, XXX, 4, RRR, 1



Then arrange these jobs as shown below:

Q1: XYZ, 1, PQR, 1, RRR, 1
Q2: ABC, 2, CBZ, 2
Q3: RTZ, 3, QQQ, 3
Q4: XXX, 4

The order of processing should be: Q1, Q2, Q3, Q4. Write a program to
simulate the above problem.



Chapter 07
Trees

Of Herbs, Shrubs and Bushes



Why This Chapter Matters?
Nature is man’s best teacher. In every walk of life

man has explored nature, learnt his lessons and then
applied the knowledge that nature offered him to
solve every-day problems that he faced at work-

place. It isn’t without reason that there are data
structures like Trees, Binary Trees, Search Trees,
AVL Trees, Forests, etc. Trees are non-linear data

structures. They have many applications in
Computer Science, hence you must understand them

comprehensively.



If large input data is stored in a linked list, then time required to access the
data is prohibitive. In such cases a data structure called Tree is used. This
data structure is often used in constructing the file systems and evaluation
of arithmetic expressions. This data structure gives a running time of O(log
n) for most operations.

Like linked lists, a tree also consists of several nodes. Each node may
contain links that point to other nodes in the tree. So, a tree can be used to
represent a person and all of his descendants as shown in Figure 7-1.

Figure 7-1. A tree structure.

Note that each node in this tree contains a name for data and one or more
pointers to the other tree nodes. Although a tree may contain any number of
pointers to the other tree nodes, a large number of have at the most two
pointers to the other tree nodes. Such trees are called Binary trees.

Binary Trees
Let us begin our study of binary trees by discussing some basic concepts
and terminology.

A binary tree is a finite set of elements that is either empty or is partitioned
into three disjoint sub-sets. The first sub-set contains a single element called
the root of the tree. The other two sub-sets are themselves binary trees,



called the left and right sub-trees of the original tree. A left or right sub-
tree can be empty.

Each element of a binary tree is called a node of the tree. The tree shown in
Figure 7-2(a) consists of nine nodes with A as its root. Its left sub-tree is
rooted at B and its right sub-tree is rooted at C. This is indicated by the two
branches emanating from A to B on the left and to C on the right. The
absence of a branch indicates an empty sub-tree. For example, the left sub-
tree of the binary tree rooted at C and the right sub-tree of the binary tree
rooted at E are both empty. The binary trees rooted at D, G, H and I have
empty right and left sub-trees.

Figure 7-2(b) illustrates a structure that is not a binary tree.

Figure 7-2. Binary tree.

Let us now learn some terminology used in association with binary trees.

Parent, Child : If A is the root of a binary tree and B is the root of its left
or right sub-tree then, A is parent of B and B is left or right child of A.

Leaf : A node that has no children (such as D, G, H, or I in Figure 7-2(a))
is called a leaf.

Ancestor, Descendant : Any node n1, is an ancestor of node n2 (and n2 is
a descendant of n1) if n1 is either the parent of n2 or the parent of some



ancestor of n2. For example, in the tree shown in Figure 7-2(a), A is an
ancestor of C.

Climbing, Descending : The root of the tree is at the top and the leaves at
the bottom. Going from the leaves to the root is called climbing the tree,
and going from the root to the leaves is called descending the tree.

Degree of a node : The number of nodes connected to a particular node is
called the degree of a particular node. For example, in Figure 7-2(a) the
node B has a degree 3. The degree of a leaf node is always one.

Level : The root of the tree has level 0. Level of any other node in the tree
is one more than the level of its parent. For example, in the binary tree
shown in Figure 7-2(a), node E is at level 2 and node H is at level 3.

Depth : Depth of a node is the maximum number of links from root to that
node. The depth of a binary tree is the maximum level of any leaf in the
tree. This equals the length of the longest path from the root to any leaf.
Thus, the depth of the tree shown in Figure 7-2(a) is 3.

Height : Height of a node is the maximum number of links from that node
to leaf node. Height of a binary tree is height of its root node.

Strictly binary tree : If every non-leaf node in a binary tree has non-empty
left and right sub-trees, the tree is termed a strictly binary tree. Thus, the
tree shown in Figure 7-3(a) is a strictly binary tree.

Complete binary tree : A complete binary tree (refer Figure 7-3(b)) has
maximum number of possible nodes at all levels except the last level, and
all the nodes of the last level appear as far left as possible.



Figure 7-3. Strictly and Complete binary tree.

Representation of Binary Trees in Memory
There are two ways by which we can represent a binary tree—Linked
representation and Array representation. Both these ways are discussed
below.

Linked Representation of Binary Trees
In liked representation each node contains addresses of its left child and
right child. If a child is absent, the link contains a NULL value. For
example, in Figure 7-4 the link fields of node C contain the address of the
nodes F and G. The left link field of node E contains the address of the
node H. Similarly, the right link contains a NULL as E has no right child.
The nodes D, F, G and H contain a NULL value in both their link fields, as
these are the leaf nodes.



Figure 7-4. Linked representation of a Binary tree.

Array Representation of Binary Trees
When a binary tree is represented by arrays three separate arrays are
required. One array arr stores the data fields of the trees. The other two
arrays lc and rc represents the left child and right child of the nodes. Figure
7-5 shows these three arrays, which represents the tree shown in Figure 7-4.

Figure 7-5. Array representation of a binary tree.

The array lc and rc contains the index of the array arr where the data is
present. If the node does not have any left child or right child then the
element of the array lc or rc contains a value -1. The 0th element of the



array arr contains the root node data. Some elements of the array arr
contain ‘\0’ which represents an empty child.

Suppose we wish to find the left and right child of the node E. Then we
need to find the value present at index 4 in array lc and rc since E is present
at index 4 in the array arr. The value present at index 4 in the array lc is 9,
which is the index position of node H in the array arr. So, the left child of
the node E is H. The right child of the node E is empty because the value
present at index 4 in the array rc is –1.

We can also represent a binary tree using one single array. For this, numbers
are given to each node starting from the root node— 0 to root node, 1 to the
left node of the first level, then 2 to the second node from left of the first
level and so on. In other words, the nodes are numbered from left to right
level by level from top to bottom. Figure 7-6(a) shows the numbers given to
each node in the tree. Note that while numbering the nodes of the tree,
empty nodes are also taken into account.



Figure 7-6. Array representation of binary tree using one array.

It can be observed that if n is the number given to the node, then its left
child is at position (2n + 1) in the array and right child at position (2n + 2).
If any node doesn’t have a left or a right child then an empty node is
assumed and a value ‘\0’ is stored at that index in the array.

Binary Search Trees
Binary search tree (BST) is a variant of binary tree in which the nodes are
arranged in a particular manner. A BST has the property that all the
elements in the left sub-tree of a node n are less than n and all the elements
in the right sub-tree of n are greater than or equal to n. Figure 7-7 shows a
few BSTs.



Figure 7-7. Sample BSTs.

Operations on a Binary Search Tree
There are many operations that can be performed on binary search trees.
Insertion, Traversal, Searching and Deletion are the most basic amongst
them. Let us now discuss these operations in detail.

Insertion of a Node
While inserting a node in a BST the value being inserted is compared with
the root node. A left sub-tree is taken if the value is smaller than the root
node and a right sub-tree if it is greater or equal to the node. This operation
is repeated at each level till a node is found whose left or right sub-tree is
empty. Finally, the new node is appropriately made the left or right child of
this node.

If the input list is 3, 9, 1, 4, 7, 11, then Figure 7-8 shows the stepwise
insertion of new nodes in a BST.



Figure 7-8. Creation of a Binary Search Tree.

Traversal of a BST
The traversal of a BST is to visit each node in the tree exactly once. There
are three popular methods of BST traversal—in-order traversal, pre-order
traversal and post-order traversal. In each of these methods nothing needs
be done to traverse an empty BST.

Recall that each sub-tree of a BST is a BST itself. Thus, traversing a BST
involves visiting the root node and traversing its left and right sub-trees.
The only difference among the methods is the order in which these three
operations are performed.

To traverse a non-empty BST in pre-order, we perform the following three
operations:

(1) Visit the root
(2) Traverse the left sub-tree in pre-order



(3) Traverse the right sub-tree in pre-order

To traverse a non-empty BST in in-order (or symmetric order):

(1) Traverse the left sub-tree in in-order
(2) Visit the root
(3) Traverse the right sub-tree in in-order

To traverse a non-empty BST in post-order:

(4) Travesrse the left sub-tree in post-order
(5) Traverse the right sub-tree in post-order
(6) Visit the root

Figure 7-9 shows the order of visiting nodes using these traversal methods
for the given BST.

Figure 7-9. Traversals of binary tree.

Searching of a Node
To search any node in a binary tree, initially the value to be searched is
compared with the root node. If they match then the search is successful. If
the value is greater than the root node then searching process proceeds in



the right sub-tree of the root node, otherwise, it proceeds in the left sub-tree
of the root node.

BST search operation is very efficient because while searching an element
we do not need to traverse the entire tree. At every node, we get a hint
regarding which sub-tree to search in. For example, in the BST shown in
Figure 7-8 step 6, if we have to search for 7, then we know that we have to
scan only the right sub-tree since 7 is greater than 3. Likewise, when we
descend down the tree and reach 9 we have to search only its left sub-tree as
7 is less than 9.

Since at every step we eliminate half of the sub-tree from the search process
the average search time is O(log2n). Same applies to insertion or deletion of
an element in a BST. As against this, in a sorted array, even though
searching can be done in O(log2n) time, insertion and deletion times are
high. In contrast, insertion and deletion of elements in a linked list is easier,
but searching takes O(n) time.

Due to this efficiency BSTs are widely used in dictionary problems where
insertion, deletion and search are done on the basis of some indexed key
value.

Deletion of a Node
While deleting a node from a BST there are four possible cases that we
need to consider. These are discussed below.

Case (a): Node to be deleted is absent.

If on traversing the BST the node is not found then we merely need to
display the message that the node is absent.

Case (b): Node to be deleted has no children

In this case since the node to be deleted has no children the memory
occupied by it should be freed and either the left link or the right link of the
parent of this node should be set to NULL. Which link should be set to
NULL depends upon whether the node being deleted is a left child or a
right child of its parent.



Case (c): Node to be deleted has one child

In this case we have to adjust the pointer of the parent of the node to be
deleted such that after deletion it points to the child of the node being
deleted. This is shown in Figure 7-10.

Figure 7-10. Deletion of a node that has only one child.

Case (d): Node to be deleted has two children

This is a more complex case. Consider node 23 shown in Figure 7-11(a).
The in-order successor of the node 23 is node 45. The in-order successor
should now be copied into the node to be deleted and a pointer should be set
up pointing to the in-order successor (node 45). The in-order successor
would always have one or zero child. This in-order successor should then
be deleted using the same procedure as for deleting a one child or a zero-
child node.



Figure 7-11. Deletion of a node that has both left and right child.

A program that implements the different operations on a BST is given
below:

Honest Solid Code

Program 7-1. Implementation of various BST operations

#include <iostream>
using namespace std;

struct btreenode
{

btreenode *leftchild;
int data;
btreenode *rightchild;

};

class btree
{

private :



btreenode *root;

void inorder (btreenode *sr);
void preorder (btreenode *sr);
void postorder (btreenode *sr);
void insert (btreenode **sr, int);
bool search (struct btreenode *, int);
void locate (btreenode **sr, int num, btreenode **par,

btreenode **x, bool *found);
void rem (btreenode **sr, int num);
void del (btreenode *sr);

public :

btree();
void buildtree (int num);
void display();
bool searchbst (int);
void remove (int num);
~btree();

};

// initialises data members
btree :: btree()
{

root = NULL;
}

// calls insert() to build tree
void btree :: buildtree (int num)
{

insert (&root, num);
}

// inserts a new node in a binary search tree
void btree :: insert (btreenode **sr, int num)
{

if (*sr == NULL)
{



*sr = new btreenode;
(*sr)->leftchild = NULL;
(*sr)->data = num;
(*sr)->rightchild = NULL;

}
else // search the node to which new node will be attached
{

// if new data is less, traverse to left
if (num < (*sr)->data)

insert (& ((*sr)->leftchild), num);
else

// else traverse to right
insert (& ((*sr)->rightchild), num);

}
}

// calls inorder() to traverse tree
void btree :: display()
{

cout << endl << “Inorder: ”;
inorder (root);
cout << endl << “Preorder: ”;
preorder (root);
cout << endl << “Postorder: ”;
postorder (root);

}

// traverse BST in Left-Root-Right fashion
void btree :: inorder (btreenode *sr)
{

if (sr != NULL)
{

inorder (sr->leftchild);
cout << sr->data << “\t”;
inorder (sr->rightchild);

}
}



// traverse BST in Root-Left-Right fashion
void btree :: preorder (btreenode *sr)
{

if (sr != NULL)
{

cout << sr->data << “\t”;
preorder (sr->leftchild);
preorder (sr->rightchild);

}
}

// traverse BST in Left-Right-Root fashion
void btree :: postorder (btreenode *sr)
{

if (sr != NULL)
{

postorder (sr->leftchild);
postorder (sr->rightchild);
cout << sr->data << “\t”;

}
}

bool btree :: searchbst (int num)
{

bool flag;
flag = search (root, num);
return flag;

}

/* search BST */
bool btree :: search (struct btreenode *sr, int num)
{

while (sr != NULL)
{

if (num == sr->data)
return true;

else if (num < sr->data)
sr = sr->leftchild;



else
sr = sr->rightchild;

}
return false;

}

// calls rem to delete node
void btree :: remove (int num)
{

rem (&root, num);
}

// deletes a node from the BST
void btree :: rem (btreenode **sr, int num)
{

bool found;
btreenode *parent, *x, *xsucc;

// if tree is empty
if (*sr == NULL)
{

cout << endl << “Tree is empty”;
return;

}

parent = x = NULL;

// call to search function to find the node to be deleted
locate (sr, num, &parent, &x, &found);

// if the node to deleted is not found
if (found == false)
{

cout << endl << “Data to be deleted, not found”;
return;

}

// if the node to be deleted has two children
if (x->leftchild != NULL && x->rightchild != NULL)
{



parent = x;
xsucc = x->rightchild;

while (xsucc->leftchild != NULL)
{
parent = xsucc;
xsucc = xsucc->leftchild;

}

x->data = xsucc->data;
x = xsucc;

}

// if the node to be deleted has no child
if (x->leftchild == NULL && x->rightchild == NULL)
{

if (parent->rightchild == x)
parent->rightchild = NULL;

else
parent->leftchild = NULL;

delete x;
return;

}

// if the node to be deleted has only rightchild
if (x->leftchild == NULL && x->rightchild != NULL)
{

if (parent->leftchild == x)
parent->leftchild = x->rightchild;

else
parent->rightchild = x->rightchild;

delete x;
return;

}

// if the node to be deleted has only left child
if (x->leftchild != NULL && x->rightchild == NULL)
{



if (parent->leftchild == x)
parent->leftchild = x->leftchild;

else
parent->rightchild = x->leftchild;
delete x;
return;

}
}

// returns the address of the node to be deleted, address of its parent
// and whether the node is found or not
void btree :: locate (btreenode **sr, int num, btreenode **par,

btreenode **x, bool *found)
{

btreenode *q;

q = *sr;
*found = false;
*par = NULL;

while (q != NULL)
{

// if the node to be deleted is found
if (q->data == num)
{

*found = true;
*x = q;
return;

}

*par = q;

if (q->data > num)
q = q->leftchild;

else
q = q->rightchild;

}
}

// calls del to deallocate memory



btree :: ~btree()
{

del (root);
}

// deletes nodes of a BST
void btree :: del (btreenode *sr)
{

if (sr != NULL)
{

del (sr->leftchild);
del (sr->rightchild);

}
delete sr;

}

int main()
{

btree bt;
int i, a[] = { 20, 17, 6, 18, 8, 5, 7, 10, 13 };
bool flag;

for (i = 0; i <= 8; i++)
bt.buildtree (a[i]);

cout << endl << “BST after insertion:”;
bt.display();

flag = bt.searchbst (13);
if (flag == true)

cout << endl << “Node 13 found in BST”;
else

cout << endl << “Node 13 not found in BST”;

bt.remove (10);
cout << endl << “BST after deleting 10:”;
bt.display();

bt.remove (14);
cout << endl << “BST after deleting 14:”;



bt.display();

bt.remove (8);
cout << endl << “BST after deleting 8:”;
bt.display();
return 0;

}

Output:

BST after insertion:
Inorder: 5    6    7    8    10    13    17    18    20
Preorder: 20    17    6    5    8    7    10    13    18
Postorder: 5    7    13    10    8    6    18    17    20
Node 13 found in BST
BST after deleting 10:
Inorder: 5    6    7    8    13    17    18    20
Preorder: 20    17    6    5    8    7    13    18
Postorder: 5    7    13    8    6    18    17    20
Node to be deleted not found
BST after deleting 14:
Inorder: 5    6    7    8    13    17    18    20
Preorder: 20    17    6    5    8    7    13    18
Postorder: 5    7    13    8    6    18    17    20
BST after deleting 8:
Inorder: 5    6    7    13    17    18    20
Preorder: 20    17    6    5    13    7    18
Postorder: 5    7    13    6    18    17    20

In main(), when the object bt of type btree is created the constructor sets
the pointer to the root node of BST to NULL indicating the BST is empty to
begin with. Then the buildtree() function is called repeatedly to insert
nodes in the BST. This function in turn calls the insert() function. Two
arguments are passed to insert()—address of pointer to the root node of
BST and data that is to be inserted.

In the insert() function it is ascertained whether BST is empty or not. If it is
empty then a new node is created and the data to be inserted is stored in it.



The left and right child of this new node is set with a NULL value, as this is
the first node being inserted.

If BST is not empty then the current node is compared with the data to be
inserted and insert() function is called recursively to insert the node in the
left/right sub-tree. Thus insert() continues to move down the levels of BST
until it reaches a leaf node. When it does, the new node gets inserted in the
left/right sub-tree.

Once all nodes are inserted, the display() function is called to display all
the nodes present in the BST. This function in turn calls inorder(),
preorder() and postorder().

inorder() is called to traverse BST as per in-order traversal. This function
receives address of the root node. A condition is checked whether the
pointer is NULL. If the pointer is not NULL then a recursive call is made
first for traversing the left sub-tree and then for traversing the right sub-tree.
In between these two recursive calls, the data of the current node is printed.

The functions preorder() and postorder() work in the same manner except
for a small difference. In case of the function preorder() initially node’s
data is printed then the recursive calls are made for the left and right sub-
trees. On the other hand, in case of postorder() firstly the recursive calls for
left and right sub-trees are made and then the node’s data is printed.

The function searchbst() searches for the given data in the BST by calling
search(). The searching is done in a while loop. If the node is found then
true is returned. If not, then we either go to the left or right sub-tree
depending upon whether the node being searched has a value less than or
greater than the current node’s data. If control goes beyond the while loop it
means that node being searched is not present in the BST. In this case false
is returned.

The remove() function is used to delete a node in BST. It calls the rem()
function. This function calls locate() to search the node to be deleted. If the
node is found, locate() sets up the address of the node to be deleted in x,
address of its parent in parent and true/false in found depending upon
whether the node is found or not. If node to be deleted is not found then an
appropriate message is displayed.



If the node to be deleted is found then one of the following four cases
would arise:

(a) the node has two children

(b) the node has no child

(c) the node has only right child

(d) the node has only left child

How each of these cases is tackled has already been discussed in the
previous section.

When main() ends, the destructor of btree class gets called. It calls the
del() function to delete all the nodes present in BST. Note that functions
inorder(), preorder(), postorder(), insert(), search(), locate(), rem() and
del() have been declared as private functions in the btree class as they are
not accessed directly from main().

Reconstruction of a Binary Tree
If we know the sequence of nodes obtained through in-order/pre-order/post-
order traversal it may not be feasible to reconstruct the binary tree. This is
because two different binary trees may yield same sequence of nodes when
traversed using post-order traversal. Similarly, in-order or pre-order
traversal of different binary trees may yield the same sequence of nodes.
However, we can construct a unique binary tree if the results of in-order and
pre-order traversal are available. Let us understand this with the help of
following set of in-order and pre-order traversal results:

In-order traversal: 4, 7, 2, 8, 5, 1, 6, 9, 3
Pre-order traversal: 1, 2, 4, 7, 5, 8, 3, 6, 9

We know that the first value in the pre-order traversal gives us the root of
the binary tree. So, the node with data 1 becomes the root of the binary tree.
In in-order traversal, initially the left sub-tree is traversed then the root node
and then the right sub-tree. So, the data before 1 in the in-order list (i.e., 4,
7, 2, 8, 5) forms the left sub-tree and the data after 1 in the in-order list (i.e.,
6, 9, 3) forms the right sub-tree. In Figure 7-12(a) the structure of tree is
shown after separating the tree in left and right sub-trees.



Now look at the left sub-tree. The data in pre-order list is 2, so the root node
of the left sub-tree is 2. Hence data before 2 in the in-order list (i.e., 4, 7)
will form the left sub-tree of the node that contains a value 2. The data that
comes to the right of 2 in the in-order list (i.e., 8, 5) forms the right sub-tree
of the node with value 2. Figure 7-12(b) shows structure of tree after
expanding the left and right sub-tree of the node that contains a value 2.



Figure 7-12. Reconstruction of a binary tree.



Now the next data in pre-order list is 4, so the root node of the left sub-tree
of the node that contains a value 2 is 4. The data before 4 in the in-order list
forms the left sub-tree of the node that contains a value 4. But as there is no
data present before 4 in in-order list, the left sub-tree of the node with value
4 is empty. The data that comes to the right of 4 in the in-order list (i.e., 7)
forms the right sub-tree of the node that contains a value 4. Figure 7-12(c)
shows structure of tree after expanding the left and right sub-tree of the
node that contains a value 4.

In the same way one by one all the data are picked from the pre-order list
and are placed and their respective sub-trees are constructed. Figure 7-12(d)
to 7-12(f) shows each step of this construction process.

Threaded Binary Tree
In the linked representation of a binary tree, many nodes contain a NULL
pointer, either in their left or right fields or in both. Instead of wasting space
in storing a NULL pointer, it can be efficiently used to store pointer to the
in-order predecessor or the in-order successor of the node. These special
pointers are called threads and binary trees containing threads are called
threaded binary trees.

In threaded binary trees the pointers that point to in-order successor of a
node are called right threads. Likewise, pointers that point to in-order
predecessor of a node are called left threads. The threads are typically
denoted using arrows as shown in Figure 7-13.



Figure 7-13. Threaded binary tree.

Figure 7-13(b) shows a head node containing a value -999. The entire
binary tree is shown as the left child of this head node. The right link of the
head node points to itself. This head node is useful while creating programs
for threaded binary tree. For example, while traversing the tree we can start
with head node, visit each node and stop the traversal when we reach the
head node once again. Note that in Figure 7-13(b) predecessor of node D
and successor of node I point to the head node as they happen to be first and
last node in the in-order traversal sequence.

In a program to help us distinguish between a pointer and a thread, the
structure that represents a node contains two additional fields, leftflag and
rightflag. If they contain a true, they represent a thread, and if they contain
a false, then they represent a pointer to a child node. The structure
declaration for a node would be as shown below.
{

enum boolean leftflag;
struct thtree *left;
int data;
struct thtree *right;
enum boolean rightflag;



};

A threaded binary tree created using this structure is shown in Figure 7-14.

Figure 7-14. Threaded binary tree showing links and threads.

Let us now write a program that inserts nodes in a threaded binary tree and
visits each node in in-order traversal.

Honest Solid Code

Program 7-2. Implementation of threaded binary tree

#include <iostream>
using namespace std;

class ttree
{

private :

struct thtree
{



bool left;
thtree *leftchild;
int data;
thtree *rightchild;
bool right;

} *th_head;

public :

ttree();
void insert (int num);
void inorder();

};

// initialises data member
ttree :: ttree()
{

th_head = NULL;
}

// inserts a node in a threaded binary tree
void ttree :: insert (int num)
{

thtree *head = th_head, *p, *z;

// allocating a new node
z = new thtree;
z->left = true; // indicates a thread
z->data = num; // assign new data
z->right = true; // indicates a thread

// if tree is empty
if (th_head == NULL)
{

head = new thtree;

// entire tree is treated as left sub-tree of head node
head->left = false;
head->leftchild = z; // z becomes leftchild of the head node
head->data = -9999; // no data



head->rightchild = head; // right link points to head node
head->right = false;

th_head = head;
z->leftchild = head;
z->rightchild = head;

}
else // if tree is non-empty
{

p = head->leftchild;

// traverse till we reach head
while (p != head)
{

if (p->data > num)
{

// check for a thread
if (p->left != true)

p = p->leftchild;
else
{

z->leftchild = p->leftchild;
p->leftchild = z;
p->left = false;
z->right = true;
z->rightchild = p;
return;

}
}
else
{

if (p->data < num)
{

if (p->right != true)
p = p->rightchild;

else
{



z->rightchild = p->rightchild;
p->rightchild = z;
p->right = false;
z->left = true;
z->leftchild = p;
return;

}
}

}
}

}
}

// traverses the threaded binary tree in in-order
void ttree :: inorder()
{

thtree *p;

p = th_head->leftchild;

while (p != th_head)
{

while (p->left == false)
p = p->leftchild;

cout << p->data << “\t”;

while (p->right == true)
{

p = p->rightchild;
if (p == th_head)

break;

cout << p->data << “\t”;

}
p = p->rightchild;

}
}

int main()



{

ttree th;

th.insert (11); th.insert (9);
th.insert (13); th.insert (8);
th.insert (10); th.insert (12);
th.insert (14); th.insert (15);
th.insert (7);

cout << “Threaded binary tree:” << endl;
th.inorder();

return 0;
}

Output:

Threaded binary tree:
7    8    9    10    11    12    13 14    15

Now, a brief explanation about the program. For each node we have used
bool variables left/right to store information whether the pointer
leftchild/rightchild is a thread or a link.

To insert a new node in the threaded BST, the insert() function is called. It
first checks for an empty tree. If the tree is empty then firstly a head node is
created. Then the node being inserted is made its left sub-tree with both
links set up as threads. Otherwise, the node is inserted at an appropriate
place by traversing the tree such that the BST nature of the tree is
preserved.

The threaded binary tree’s in-order traversal is different than a normal tree
in the sense that we do not have to stack the pointers to nodes visited earlier
so as to reach them later. This is avoided by using the threads to ancestors.
The procedure to achieve this is as follows:

This procedure begins by first going to the left sub-tree of the head node.
Then through a while loop we follow the left pointers until a thread to a
predecessor is found. On encountering this thread, we print the data for the
leftmost node. Next, through another while loop we follow the thread back
up to the ancestor node and print this ancestor node’s data. This way we



continue to move up till right is a thread. When we reach a link, we go to
the right child and again follow the same procedure by checking its left sub-
tree.

As we follow these steps, we are sometimes likely to reach the head node,
and that is the time to stop the procedure.

AVL Trees
We know that height of a BST is the maximum number of edges from leaf
node to root node. Note that if we change the order of insertion of nodes in
a BST, we may get BSTs of different heights. As a confirmation, you may
try creating two BSTs using the insertion order as 30, 40, 10, 50, 20, 5, 35
and 50, 40, 35, 30, 20, 10, 5. In the first case you would get a BST of height
2 and in the second case a BST of height 6.

Also, search time in a BST depends upon its height. Searching is efficient if
the heights of both left and right sub-trees of any node are equal. However,
frequent insertions and deletions in a BST are likely to make it unbalanced.
The efficiency of searching is ideal if the difference between the heights of
left and right sub-trees of all the nodes in a BST is at the most one. Such a
binary search tree is called a Balanced BST. It was invented in the year
1962 by two Russian mathematicians—G. M. Adelson-Velskii and E. M.
Landis. Hence such trees are also known as AVL trees. Figure 7-15 shows
some examples of AVL trees.

Figure 7-15. AVL trees.

The balance factor of a node is calculated as height of the left sub-tree
minus height of the right sub-tree of the node. The balance factor of any



node in an AVL BST should be -1, 0 or 1. If it is other than these three
values then the tree is not balanced.

To re-balance and make it an AVL tree the nodes need to be properly
adjusted. This is done by doing one of the 4 types of rotations—Left
rotation, Right rotation, Left Right rotation and Right Left rotation. Of
these, first two involve a 1 step process, whereas the next two involve a 2-
step process.

Figure 7-16 shows LL, RR, LR and RL imbalances and how to correct them
by doing appropriate rotations.



Figure 7-16. LL, RR, LR and RL imbalances and rotations.

In general on inserting a new node in an AVL BST we should carry out the
following steps:

Step 1 : Calculate balance factors of all nodes
Step 2 : Identify type of imbalance
Step 3 : Perform rotation(s)

Let me explain the imbalances and the rotations with the help of cases
shown in Figure 7-16. Let us take the first case. Assume that BST already
contains nodes 30 and 20. When we insert node 10, it is inserted to the left
of 30 and to the left of 20. Now calculate the balance factors. They turn out
to be 2, 1 and 0 for nodes 30, 20 and 10 respectively. Out of these, balance
factor 2 is unacceptable. Since this was caused by inserting 10 to the left of
30 and to the left of 20, this imbalance is called LL imbalance. To correct it,
we need to do right rotation about 30. Imagine as if there is string attached
to node 30 and we are pulling it to the right. The resultant BST has balance
factors 0, 0 and 0. Thus the tree is now balanced. On similar lines RR
imbalance and the left rotation can be explained.

In the third case when we insert 20 it is inserted to the left of 30 and to the
right of 20. Balance factors turn out to be 2, -1 and 0 for nodes 30, 10 and
20 respectively. To correct the imbalance, we need to perform a left rotation
around 10. The resultant BST has balance factors of 2, 1 and 0. To correct
the imbalance we should now perform a right rotation around 30. The
resultant BST has satisfactory balance factors. On similar lines the RL
imbalance can be explained.



In all the four cases discussed above there was only one node that caused
the imbalance. In some other case if 2 nodes are unbalanced then we need
to rotate about the first ancestor that caused imbalance.

Binary Heap
Binary heap is a complete binary tree. It means all its levels are completely
filled except perhaps last and at the last level nodes are as much to left as
possible.

There are two types of heaps. If the value present at any node is greater than
all its children then such a tree is called as the max heap or descending
heap. In case of a min heap or ascending heap the value present in any
node is smaller than all its children. Figure 7-17 shows these two types of
heaps.

Figure 7-17. Types of heaps.

One of the common operations carried out while using a binary heap is
heapification of a node. While heapifying a node in a max heap, we need to
ensure that all its children satisfy the heap property—Parent >= Left child,
Right child. This operation involves following steps:

(a) Pick maximum out of given node, and its left and right child

(b) If maximum is root, do nothing

(c) If maximum is left, exchange root with left and heapify left node

(d) If maximum is right, exchange root with right and heapify right node



These operations are shown in Figure 7-18.

Figure 7-18. Heapify operation.

Note that in the binary tree shown in Figure 7-18 node 13 and node 9 were
violating the heap property. While heapifying 13, maximum out of 13, 1,
and 90 is 90. Since 90 is the right child, it is exchanged with 13. As against
this, while heapifying 9, maximum (25) turns out to be the left child. So 25
is exchanged with 9. Since after exchange 13 and 9 became child nodes, we
did not have to heapify them further.

Figure 7-19 shows a case where further heapification is necessary.



Figure 7-19. Multi-step heapify operation.

Let us now see how see how we can create max heap out of a binary tree
programmatically. We will be using an array to store the nodes in the binary
tree.

Honest Solid Code

Program 7-3. Construction of max heap

#include <iostream>
using namespace std;

void heapify (int [], int, int);



int main()
{

int arr[] = { 11, 2, 9, 13, 3, 25, 17, 1, 90, 57 };
int i, size;

size = 10;
for (i = size / 2 - 1; i >= 0; i–)

heapify (arr, size, i);

for (i = 0; i < size; i ++)
cout << arr[i] << “\t”;

}

void heapify (int arr[], int sz, int i)
{

int largest, lch, rch, t;

lch = 2 * i + 1;
rch = 2 * i + 2;

if (lch >= sz)
return;

largest = i;
/* if left child is larger than root */
if (lch < sz && arr[lch] > arr[largest])

largest = lch;

/* if right child is larger than largest so far */
if (rch < sz && arr[rch] > arr[largest])

largest = rch;

/* if largest is not root */
if (largest != i)
{

t = arr[i];
arr[i] = arr[largest];
arr[largest] = t;

/* heapify the affected sub-tree */
heapify (arr, sz, largest);

}



}

Output:
90    57    25    13    11    9    17    1    2    3

On execution of the program the binary tress shown in Figure 7-20(a) gets
converted into a max heap shown in Figure 7-20(b).

Figure 7-20. Conversion of binary tree to max heap.

The program begins by declaring an array that represents the binary tree.
We know that in array representation of a binary tree, a node at location i
has its left and right child at locations (2i + 1) and (2i + 2) respectively.
Next, in the for loop we have repeatedly called heapify() moving level by
level from leaf towards root, and at any level from right to left, starting
from node at location size / 2 -1. The heapify() function finds the largest
out of given node, and its left and right child.

If the given node turns out to be largest then it does nothing. But if left/right
child turns out to be largest it exchanges the given node with left/right child
and then proceeds to heapify the left/right child.

Binary heap is used in many areas of computer science. Some of these are
listed below.

(a) Finding minimum spanning tree

(b) Finding the shortest path in a network of cities



(c) Implementing priority queues

(d) Merging K sorted arrays

Chapter Bullets

Summary of chapter

(a) Tree is a non-linear data structure.

(b) Each node in a binary tree can have 0, 1 or 2 children.

(c) Unlike trees in nature a binary tree has root at the top and leaves at the
bottom with root node at level 0.

(d) Depth of a node is largest number of links from root to that node.

(e) Height of a node is largest number of links from leaf node to that node.

(f) A binary tree can be traversed in in-order, pre-order and post-order
fashion

(g) If we know any two sequences out of in-order, pre-order and post-order,
it is possible to construct the binary tree.

(h) A binary tree can be represented using array representation or linked
representation.

(i) BST and AVL trees are special types of binary trees. They are created
with an aim to improve the efficiency of working with binary trees.

(j) The property parent >= child is satisfied for all nodes in a max heap, and
parent <= child for all nodes in a min heap.

Check Your Progress



Exercise - Level I

[A] State whether the following statements are True or False:

(a) A binary tree whose non-leaf nodes have left and the right child is a
complete binary tree.

(b) The number of nodes attached to a particular node in a tree is called the
degree of the node.

(c) To reconstruct a unique binary tree the in-order and pre-order lists are
required.

(d) The balance factor of a node in an AVL tree is 1 if the height of the left
sub-tree is one less than the height of the right sub-tree.

[B] Fill in the blanks:

(a) In a threaded binary tree, the address of the in-order predecessor and in-
order successor are stored in____ and____ child of the leaf node
respectively.

(b) In any node of B-tree of order n the minimum required values and
children are____and____respectively.

(c) In a heap if the largest element is present at the root node, then it is
called as the____heap.

Sharpen Your Skills

Exercise - Level II

[C] Answer the Following:

(a) Write a program that finds the height of a binary tree.

(b) Write a program that counts the number of nodes in a binary tree and the
number of leaf nodes in a binary tree.



(c) Given a binary tree, create another binary tree that is mirror image of the
given tree.

(d) Write a program that implements the non-recursive form of the
functions inorder(), preorder() and postorder().

Coding Interview Questions

Exercise Level III

[D] Answer the Following:

(a) Given any number, write a program to find whether that number is
present in the binary tree. If present then find the level at which it is
present.

(b) Given two binary trees, write a program that finds whether
- the two binary trees are similar
- the two binary trees are mirror images of each other.

(c) Write a program that finds the number of nodes in a binary tree at each
level.

(d) Write a program that traverses a binary tree level by level, from left
towards right.

(e) Write a function to insert a node t as a left child of any node s in a
threaded binary tree.

Case Scenario Exercise

Dictionary implementation

We wish to maintain a dictionary of words as a binary tree. Each node
should contain a word, its meaning, a synonym and an antonym. There must



be a provision to insert a word, search a word and delete a word. It should
be also possible to print the entire dictionary in alphabetical order.



Chapter 08
Graphs

Spread Your Tentacles



Why This Chapter Matters!
Networking! Be it any walk of life, that’s the

keyword today. Better your network, farther you
would reach, and farther you spread your tentacles,

better would be your network. And the crux of
building and managing a network is hidden in a

subject as innocuous as data structures in a topic
called Graphs. Naturally, you must learn it to the best

of your ability.



The only non-linear data structure that we have seen so far is tree. A
tree in fact is a special type of graph. Graphs are data structures which

have wide-ranging applications in real life. These include analysis of
electrical circuits, finding shortest routes between cities, building a
navigation system such as Google Maps, etc. To be able to understand and
use the graph data structure one must first get familiar with the definitions
and terms used in association with graphs. These are discussed below.

Definitions and Terminology
A graph consists of two sets v and e, where v is a finite, non-empty set of
vertices and e is a set of pairs of vertices. The pairs of vertices are called
edges. A Graph can be of two types: Undirected graph and Directed graph.

In an undirected graph the pair of vertices representing any edge is
unordered. Thus, the pairs (v1, v2) and (v2, v1) represent the same edge.

In a directed graph each edge is represented by a directed pair <v1, v2>. v1
is the tail and v2 the head of the edge. Therefore, <v2, v1> and <v1, v2>
represent two different edges. A directed graph is also called Digraph. In
Figure 8-1 the graph G1 is an undirected graph whereas graph G2 is a
directed graph.

Figure 8-1. Directed and undirected graphs.



Note that the edges of a directed graph are drawn with an arrow from the
tail to the head.

When Google Maps uses graph, each intersection is a vertex and each
segment of road is an edge. Any useful information may be associated with
both vertices and edges. For example, a navigation system could associate a
GPS coordinate with each vertex and distance and speed limit with each
edge.

Adjacent Vertices and Incident Edges
In an undirected graph if (v1, v2) is an edge in the set of edges, then the
vertices v1 and v2 are said to be adjacent and the edge (v1, v2) is incident
on vertices v1 and v2. In Figure 8-2, vertex 2 in G1 is adjacent to vertices
1, 3, and 4. The edges incident on vertex 3 in G1 are (1, 3), (2, 3) and (4,
3).

If <v1, v2> is a directed edge, then vertex v1 is said to be adjacent to v2
while v2 is adjacent from v1. The edge <v1, v2> is incident on v1 and v2.
In Figure 8-2, in G2, vertices 1 and 3 are adjacent to vertex 2, whereas,
vertex 2 is adjacent from vertex 1. Also, the edges incident on vertex 2 are
<1, 2>, < 2, 1 > and < 2, 3 >.

Graph Representations
There are many ways of representing a graph in memory. Often, it will turn
out that one of these representations will be better than others for a given
application. The most commonly used representations for graphs are

(a) Adjacency matrix
(b) Adjacency lists
(c) Adjacency multi-lists

Each of these representations is discussed below.

Adjacency Matrix
An adjacency matrix of a graph is a 2-dimensional array of size n x n
(where n is the number of vertices in the graph) with the property that a[i]



[j] = 1 if the edge (vi, vj) is in the set of edges, and a[i][j] = 0 if there is no
such edge. The adjacency matrices for two sample graphs are shown in
Figure 8-2.

As can be seen from Figure 8-2, the adjacency matrix for an undirected
graph is symmetric. The adjacency matrix for a directed graph need not be
symmetric. The space needed to represent a graph using its adjacency
matrix is n2 locations. About half of this space can be saved in the case of
undirected graphs by storing only the upper or lower triangle elements of
the matrix.

Figure 8-2. Adjacency matrices.

Adjacency Lists
This is a vertex based-representation. In this representation we associate
with each vertex a linked list of vertices adjacent to it. Normally an array is
used to store the vertices. Each array element contains the vertex label, any



other related information, plus a pointer to a linked list of nodes containing
adjacent vertices. The array provides random access to the adjacency list for
any particular vertex. The adjacency lists for two sample graphs are shown
in Figure 8-3.

The advantage of this representation is that we can quickly find all the
edges associated with a given vertex by traversing the list, instead of having
to look through possibly hundreds of zero values to find a few ones in a row
of an adjacency matrix.

Figure 8-3. Adjacency lists.

In this representation, for an undirected graph each edge-information
appears twice. For example, in Figure 8-3(a), vertex 1 and 2 are adjacent,
hence vertex 2 appears in the list of vertex 1, and vertex 1 appears in the list
of vertex 2.



Also, for a digraph it is easy to find the vertices adjacent to a given vertex.
For example, in Figure 8-3(b) to find vertices adjacent to vertex 2, we
simply have to follow adjacency list of vertex 2. However, if we are to find
out vertices from which to which 2 is adjacent, we have to scan the
adjacency lists of all vertices. In Figure 8-3(b) on scanning all the lists, we
can conclude that vertex 1 is the only vertex that is adjacent from vertex 2.
This inefficiency related to a digraph can be rectified by using an adjacency
multi-list representation.

Adjacency Multi-lists
An adjacency multi-list is an edge-based representation rather than a vertex-
based representation. Each node that represents an edge consists of 5 fields.
Of these, 2nd and 4th field are related and 3rd and 5th field are related. We
would soon see the relationship.

Like adjacency list, an array of vertices is also maintained. Each array
element points to a suitable edge node.

Figure 8-4. Adjacency multi-lists for undirected graph.



While constructing the multi-lists for graph shown in Figure 8-4 firstly the
fields Vi and Vj are filled in the 6 edge nodes, E1 to E6. Then we start with
vertex 1. This vertex has 3 incident edges E1, E2 and E3. Hence the 1st

element of vertices array is made to point to edge E1. Then the edge node
for E1 is searched for vertex 1. It is found in Vi field of E1. Since the next
incident edge for vertex 1 is E2 the fourth field of node E1 is set up with
pointer to edge node E2. Then node E2 is examined for vertex 1. Here also 1
is found in field Vi. Hence pointer to node E3 is set up in fourth field of
node E2. Then E3 is searched for vertex 1. It is found in field Vi. Since there
are no more edges incident on vertex 1 hence fourth field of node E3 is set
with NULL.

Let us understand this process for vertex 2 as well. Vertex 2 has 3 incident
edges E1, E4 and E5. So, to begin with, the 2nd element of vertices array is
made to point to edge E1. Then E1 is searched for vertex 2. 1 is found in Vj
field of E1. Since the next incident edge for vertex 2 is E4 the fifth field of
node E1 is set up with pointer to edge node E4. Then node E4 is examined
for vertex 2. Here 2 is found in field Vi. Hence the fourth field of node E4 is
setup with pointer to edge E5. Then E5 is searched for vertex 2. It is found
in field Vi. Since there are no more edges incident on vertex 2 hence fourth
field of node E5 is set with NULL.

If this procedure is carried out systematically for all other vertices, then the
adjacency multi-lists shown in Figure 8-4 would get created. If we traverse
these lists for each element of the vertex array then we can find out the
sequence of incident edges for each vertex. These sequences are given
below.

Vertex 1 : E1, E2, E3
Vertex 2 : E1, E4, E5
Vertex 3 : E2, E4, E6
Vertex 4 : E3, E5, E6

On similar lines we can also create adjacency multi-lists for a directed
graph. Only difference being, there would be two elements for each vertex



in the array of vertices—one when the vertex is head of an edge and another
when it is a tail. This is shown in Figure 8-5.

Figure 8-5. Adjacency multi-lists for directed graph.

If we traverse the lists shows in Figure 8-5 for each element of the vertex
array, then we the sequence of incident edges for each vertex would be as
follows. These sequences are given below.

V1h : E2
V1t : E1
V2h: E1, E4
V2t : E2, E3
V3h: E3
V3t : E4

Graph Traversals



Given the root node of a binary tree, one of the most common operations
performed is visiting every node of the tree in some order. Similarly, given
a vertex in a directed or undirected graph we may wish to visit all vertices
in the graph that are reachable from this vertex. This can be done in two
ways—using the Depth First Search and the Breadth First Search algorithm.
Let us now understand these algorithms.

Depth First Search
In this algorithm we start at a vertex and move as far as we can down one
path from the vertex before exploring the other paths. This requires some
way of marking vertices so that we do not visit them more than once. This
is done by using an array of vertices initialized to false values before the
search. As each vertex is visited, the corresponding element in the array is
set to true. Note that pre-order traversal of a binary tree is nothing but a
depth first search.

Depth first search of an undirected graph proceeds as follows. We start at
any vertex v. The start vertex v is visited. Next an unvisited vertex w
adjacent to v is selected and a depth first search from w is initiated. When a
vertex u is reached such that all its adjacent vertices have been visited, we
back up to the last vertex visited which has an unvisited vertex w adjacent
to it and initiate a depth first search from w. The search terminates when no
unvisited vertex can be reached from any of the visited ones.

Figure 8-6. Graph and its adjacency lists.



Figure 8-6 shows a graph and its adjacency lists. If a depth first search is
initiated from vertex v1, then the vertices of this are visited in the order V1,
V2, V4, V8, V5, V6, V3, V7.

The depth first search algorithm is implemented in the program given
below.

Honest Solid Code

Program 8-1. Implementation of Depth First Search algorithm

#include <iostream>
using namespace std;

class graph
{

private :

int arr[8][8];
int visited[8];

public :
graph()
{

int i, j;

for (i = 0; i < 8; i++)
{

for (j = 0; j < 8; j++)
arr[i][j] = 0;

}
arr[0][1] = arr[1][0] = 1;
arr[0][2] = arr[2][0] = 1;
arr[1][3] = arr[3][1] = 1;
arr[1][4] = arr[4][1] = 1;
arr[2][5] = arr[5][2] = 1;
arr[2][6] = arr[6][2] = 1;



arr[3][7] = arr[7][3] = 1;
arr[4][7] = arr[7][4] = 1;
arr[5][7] = arr[7][5] = 1;
arr[6][7] = arr[7][6] = 1;

for (i = 0; i < 8; i++)
visited[i] = false;

}

void dfs (int sz, int idx)
{

int i;

visited[idx] = 1;
cout << idx + 1 << “ ”;

/* go to all columns of idx row */
for (i = 0; i < sz; i++)
{

if (visited[i] == 0 && arr[idx][i] == 1)
dfs (sz, i);

}
}

};

int main()
{

graph g;
g.dfs (8, 0);
return 0;

}

Output:
1    2    4    8    5    6    3    7

The program uses adjacency matrix to create the graph shown in Figure 8-6.
Once the matrix is created, the function dfs() is called that visits each vertex
and marks it as visited by storing a value in the visited array.

Breadth First Search



Starting at vertex v and marking it as visited, breadth first search differs
from depth first search in that all unvisited vertices adjacent to v, are visited
next. Then unvisited vertices adjacent to these vertices are visited and so
on. A breadth first search beginning at vertex V1 of graph shown in Figure
8-6 would first visit V1 and then V2 and V3. Next vertices V4, V5, V6 and
V7 will be visited and finally V8.

Note that level-order traversal of a binary tree is nothing but breadth first
search. The following program implements this algorithm.

Honest Solid Code

Program 8-2. Implementation of Breadth First Search algorithm

#include <iostream>
using namespace std;

const int MAX = 10;

class queue
{

private :

int arr[MAX], front, rear;

public :

queue()
{

front = rear = -1;
}

/* adds an element to the queue */
void addq (int item)
{

if (rear == MAX - 1)
{

cout << “Queue is full” << endl;



return;
}

rear++;
arr[rear] = item;

if (front == -1)
front = 0;

}

/* removes an element from the queue */
int delq()
{

int data;

if (front == -1)
{

cout << “Queue is Empty” << endl;
return NULL;

}

data = arr[front];
arr[front] = 0;
if (front == rear)

front = rear = -1;
else

front++;

return data;
}

/* cheques whether queue is empty or not */
bool isempty()
{

if (front == -1 && rear == -1)
return true;

else
return false;

}
};



class graph
{

private :

int arr[8][8];
int visited[8];

public :

graph()
{

int i, j;

for (i = 0; i < 8; i++)
{

for (j = 0; j < 8; j++)
arr[i][j] = 0;

}
arr[0][1] = arr[1][0] = 1;
arr[0][2] = arr[2][0] = 1;
arr[1][3] = arr[3][1] = 1;
arr[1][4] = arr[4][1] = 1;
arr[2][5] = arr[5][2] = 1;
arr[2][6] = arr[6][2] = 1;
arr[3][7] = arr[7][3] = 1;
arr[4][7] = arr[7][4] = 1;
arr[5][7] = arr[7][5] = 1;
arr[6][7] = arr[7][6] = 1;

for (i = 0; i < 8; i++)
visited[i] = false;

}

void bfs (int sz)
{

queue q;
int idx, i;

q.addq (0);
while (!q.isempty())
{



idx = q.delq();
if (visited[idx] == 0)
{

visited[idx] = 1;
cout << idx + 1 << “ ”;
for (i = 0; i < sz; i++)
{
if (visited[i] == 0 && arr[idx][i] == 1)

q.addq(i);
}

}
}

}
};

int main()
{

graph g;
g.bfs (8);
return 0;

}

Output:
1    2    3    4    5    6    7    8

The function bfs() of the graph class visits each vertex and marks it visited.
While doing so it uses the member functions isempty(), addq() and delq()
of the queue class to maintain a queue of vertices.

Spanning tree
A spanning tree of a graph is an undirected tree consisting of only those
edges that are necessary to connect all the vertices in the original graph.
Figure 8-7 shows a graph some of its spanning trees.



Figure 8-7. Graph and its spanning trees.

A spanning tree has a property that for any pair of vertices there exists only
one path between them, and the insertion of any edge to a spanning tree
form a unique cycle.

The particular spanning tree for a graph depends on the criteria used for
generating it. The spanning tree resulting from a call to depth first tree is
known as depth first spanning tree. Similarly, a spanning tree resulting from
a call to breadth first tree is known as a breadth first spanning tree. Figure
8-8 shows a graph and its DFS and BFS spanning trees.

Figure 8-8. >Graph and its depth / breadth first search spanning tree.

The spanning tree is useful in analysis of electrical circuits, shortest route
problems and designing hydraulic / road / cable / computer network.

A graph may have weights on its edges. For example, if vertices A and B
represent cities in a road network, then the weight on edge AB may



represent cost of visiting B from A, or vice versa.

The cost of a spanning tree is the sum of costs of the edges in that tree. A
minimum cost spanning tree has cost less than or equal to cost of all other
spanning trees. Figure 8-9 shows a graph, its spanning trees and the
minimum cost spanning tree.

Figure 8-9. Graph and its depth / breadth first search spanning tree.

One method to determine a minimum cost spanning tree has been given by
Kruskal. This method is discussed below.

Kruskal’s Algorithm
In this algorithm a minimum cost spanning tree T is built edge by edge.
Edges are considered for inclusion in T in increasing order of their costs.
An edge is included in T if it does not form a cycle with edges already in T.
Let us understand this with the help of an example.

Consider the graph shown in Figure 8-10. To find the minimum cost of
spanning tree the edges are inserted into tree in increasing order of their
costs. To begin with edge 4-3 is inserted as it has the lowest cost 1. Then the



edge 4-2 is inserted which has a cost 2. The next edge in the order of cost is
3-2, but it is rejected as it forms a cyclic path between the vertices 2, 3 and
4. Then the edge 4-1 is inserted and it is accepted as it forms a non-cyclic
path.

The minimum cost of spanning tree is given by the sum of costs of the
existing edges, i.e. the edges that are inserted while building the spanning
tree of minimum cost. In our case it is found to be 7.



Figure 8-10. Minimum cost spanning tree using Kruskal’s algorithm.

Prim’s Algorithm
There is one more method to find the minimum cost spanning tree for a
weighted undirected graph. This is known as Prim’s algorithm. The steps
involved in it are given below.



(a) Choose any vertex.
(b) Add it to the spanning tree vertex set and remove it from graph vertices

set.
(c) Identify the vertices connected with the chosen vertex.
(d) Compare the weights of edges connecting the chosen vertex and

identified vertices.
(e) Choose connected edge which has minimum weight.
(f) Add it to the spanning tree vertex set.
While choosing a vertex we should not choose a vertex already in the
spanning tree vertex set or if it forms a cycle.

This algorithm has been implemented on a sample graph in Figure 8-11.
The check mark indicates the vertex that is included after comparison.



Figure 8-11. Minimum cost spanning tree using Prim’s algorithm.

Shortest Path



A minimal spanning tree gives no indication about the shortest path
between two nodes. Rather only the overall cost is minimized. In real life
we are required to find shortest path between the two cities. For example,
an airliner would be interested in finding most economical route between
any two cities in a given network of cities. The algorithm to find such a
path was first proposed by E.W.Dijkstra.

Dijkstra’s Algorithm
This algorithm works for a directed as well as an undirected graph. Kruskal,
Prim and Dijkstra algorithms are greedy algorithms. Typically, greedy
algorithms build a solution piece by piece. At every step, they make a
choice that looks best at that moment. Note that if a problem is solvable
using greedy algorithm, it is usually the best solution.

The steps involved in Dijkstra’s algorithm are given below.

(a) Mark all nodes as unvisited by creating a set of all the unvisited nodes.
(b) Assign distance values—0 to initial node, infinity to others.
(c) Set the initial node as current node and identify all of its unvisited

neighbors.
(d) Calculate neighbor’s distances from current node.
(e) Assign smaller of newly calculated and current distance.
(f) Mark the current node as visited.
(g) Set smallest distance unvisited node as new current node.
(h) Go back to step (c).

Dijkstra’s algorithm can be best understood with the help of an example.
Consider the weighted digraph shown in Figure 8-12. Let us begin with
node 1 as the initial node. Set its distance value to 7 and distance value of
other nodes to ∞. These values are shown in Figure 8-12 in boxes. Treat
node 1 as the current node, so its neighbors will be nodes 2, 3 and 4.
Recalculate the distance values by comparing existing values with actual
distances and set the lower of the two. For example, current distance value
of node 2 is ∞ and actual distance is 5. So lower of the two, i.e., 5 is set up
as the new distance value. Distance values of nodes 3 and 4 would remain
∞ as there is no path from node 1 to nodes 3 and 4. Now mark node 1 as
visited.



Next, compare the distances of nodes 2, 3 and 4 from node 1. They are 5, ∞
and ∞. Smallest amongst them is 5. So consider node 2 as the current node
and repeat the same procedure again as shown in steps 3, 4 and 5 in Figure
8-12. Note that in step 3, cost of visiting node 4 from node 2 will be current
cost + actual distance, i.e., 5 + 2 = 7. The final result of this process is
shown in tabular form in Figure 8-11.

Figure 8-12. Implementation of Dijkstra’s algorithm.

Note that we have found shortest path of all vertices from vertex 1. On
similar lines, if we choose any other vertex as the starting vertex then we
can find shortest distance of other vertices from the chosen vertex.

The following program shows how to find the shortest path between any
two vertices.



Honest Solid Code

Program 8-3. Implementation of Dijkstra’s algorithm

#include <iostream>
using namespace std;

const int INF = 999;

int main()
{

int arr[4][4];
int cost[4][4] = {

    7, 5, 0, 0,
    7, 0, 0, 2,
    0, 3, 0, 0,
    4, 0, 1, 0
};

int i, j, k, n = 4;

for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
{

if (cost[i][j] == 0)
arr[i][j] = INF;

else
arr[i][j] = cost[i][j];

}
}

cout << “Adjacency matrix of cost of edges:” << endl;
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
cout << arr[i][j] << “\t”;

cout << endl;
}



for (k = 0; k < n; k++)

{
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
{

if (arr[i][j] > arr[i][k] + arr[k][j])
arr[i][j] = arr[i][k] + arr[k][j];

}
}

}

cout << endl;
cout << “Adj. matrix of lowest cost between vertices:” << endl;
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
cout << arr[i][j] << “\t”;

cout << endl;
}

return 0;
}

Output:

Adjacency matrix of cost of edges:
7      5      999     999
7      999  999     2
999  3      999     999
4      999   1        999

Adj. matrix of lowest cost between vertices:
7    5    8    7
6    6    3    2
9    3    6    5
4    4    1    6



In the program the array cost[] is defined which is adjacency matrix of the
cost of edges. In the array some values are 0 indicating that there is no
direct path between the two vertices. One more array arr[] is defined which
to begin with holds the value that the array cost[] holds. The only difference
is instead of 0 it holds a value 999, which is defined as INF (infinity). Then
through nested for loops the lowest value is assigned to each element of the
array arr[] if the value already present is found to be greater.

Topological Sorting
Topological sorting is a special sorting technique that is relevant only for a
Directed Acyclic Graph (DAG). If a DAG is represented using an array,
then after sorting for every directed edge uv, u comes before v in the array.
Note that for same DAG multiple solutions may exist.

Let us understand the sorting procedure using a sample DAG shown in
Figure 8-13. We have to maintain a boolean array of vertices called
visited[]. Initially, all elements of this array are set to false indicating that
we haven’t visited any vertices.

Figure 8-13. Implementation of Topological sort

Next, we have to start at a vertex with in-degree as 0, i.e., a vertex with no
incoming edges. Suppose we start with vertex 0. So set value of visited[0]



to true. From 0 we can go to 1, 2, or 3. Suppose we decide to visit 1. So set
visited[1] to true. From 1 we can move further to 4, so set visited[4] to true.
From 4 we cannot move any further, so we push 4 in a stack. Now go back
to previous vertex, i.e., vertex 1. From 1 only vertex we can visit is 4 and it
already stands visited. So, push vertex 1 on the stack and go back to its
previous vertex, i.e., 0. From 0 we can visit 1, 2 or 3. Of these, we have
already visited 1, so let us now visit 2. Set visited[2] to true. From 2 we can
visit either 4 or 5. But 5 has already been visited, so visit 5 and set
visited[4] to true. Repeat this procedure till all vertices are visited. By that
time the contents of the stack will be as shown in Figure 8-13. If we unwind
the stack and print each element that is popped, we get the topological order
of vertices. Confirm that in this order for every directed edge uv, u occurs
before v.

Note that topological sorting is not same as DFS. As shown in Figure 8-13,
the sequence of vertices of DFS and topological sort are different.

Chapter Bullets

Summary of chapter

(a) There are two types of graphs—directed graph and undirected graph.

(b) A graph can be represented using an adjacency matrix, adjacency lists or
adjacency multi-lists.

(c) There are two algorithms for graph traversal—depth first search and
breadth first search.

(d) A spanning tree is an undirected tree consisting of only those edges that
are necessary to connect all vertices in the original graph.

(e) Minimum cost spanning tree can be obtained using Kruskal’s algorithm
or Prim’s algorithm.

(f) The shortest path between vertices in a weighted directed graph can be
obtained using Dijkstra’s algorithm.



Check Your Progress

Exercise - Level I

[A] State whether the following statements are true or false:

(a) If v1 and v2 are two vertices of a directed graph G, then the edges <v1,
v2> and <v2, v1> represent the same edge.

(b) For a graph there can exist only those many spanning trees as the
number of vertices.

(c) To find minimum cost spanning tree edges are inserted in increasing
order of their cost.

(d) The number of elements in the adjacency matrix of a graph having 6
vertices is 36.

(e) If V is the number of vertices and E is the number of edges in a graph,
the time complexity to calculate the number of edges of the graph
represented using an adjacency matrix is O(V2).

(f) If V is the number of vertices and E is the number of edges in a graph,
time Complexity of Depth First Search is O(V + E).

(g) If V is the number of vertices and E is the number of edges in a graph,
time Complexity of Breadth First Search is O(V + E).

(h) Adjacency matrix of any graph is always symmetric.

(i) Dijkstra’s Algorithm works for both negative and positive weights.

Sharpen Your Skills

Exercise - Level II



[B] Choose the correct alternative for the following:

(a) For an adjacency matrix of a directed graph the row sum is the____
degree of a vertex and the column sum is the ____degree of the vertex.

(1) in, out
(2) out, in
(3) in, total
(4) total, out

(b) What is the maximum number of possible non-zero values in an
adjacency matrix of a simple graph with n vertices?

(1) (n * (n - 1)) / 2
(2) (n * (n + 1)) / 2
(3) n * (n - 1)
(4) n * (n + 1)

(c) Breadth First Search is equivalent to which of the traversal in the Binary
Trees?

(1) Pre-order Traversal
(2) Post-order Traversal
(3) Level-order Traversal
(4) In-order Traversal

(d) Depth First Search is equivalent to which binary tree traversal?
(1) Pre-order Traversal
(2) Post-order Traversal
(3) Level-order Traversal
(4) In-order Traversal

(e) The data structure used in implementation of Breadth First Search is
(1) Stack
(2) Queue
(3) Linked List
(4) None of the mentioned

(f) The data structure used in implementation of Breadth First Search is?
(1) Stack
(2) Queue
(3) Linked List
(4) None of the mentioned



(g) Joshi wants to visit 5 cities starting from Mumbai with an aim to
minimize the cost of travel. Which of the following algorithm should he
use?

(1) Depth First Search
(2) Kruskal’s algorithm
(3) Prim’s algorithm
(4) Dijkstra’s algorithm

Coding Interview Questions

Exercise Level III

[C] Answer the following:

(a) If a graph is represented using an adjacency matrix, write a program that
finds

- the number of vertices in a graph.
- the number of adjacent vertices for a given vertex.

(b) What would be the sequence of nodes if the graph shown is Figure 8-
14(a) is traversed using DFS algorithm starting at vertex 6?

Figure 8-14. Graphs.



(c) What would be the sequence of nodes if the graph shown is Figure 8-
14(b) is traversed using BFS algorithm starting at vertex 5?

(d) Create a minimum spanning tree for graph shown in Figure 8-14(c)
using Kruskal’s algorithm.

(e) Create a minimum spanning tree for graph shown in Figure 8-14(c)
using Prim’s algorithm.

Case Scenario Exercise

Kruskal’s and Prim’s algorithm

Write a program to implement Kruskal’s and Prim’s algorithms. Also
analyze the time complexity of each implementation.



Chapter 09
Searching and Sorting

Seek Me Out, Sort Me Out



Why This Chapter Matters?
It would be an interesting statistic to find out how
much time pre-computer-age generations spent in

searching things and arranging them in an order.
What a colossal waste it must have been to do these

things manually! When history of computing is
written ‘searching’ and ‘sorting’ would be right there

at the top, as entities responsible for changing the
way people do work.



W e often spend time in searching some thing or the other. If the data
is kept properly in some sorted order, then searching becomes very

easy. Think of searching a word’s meaning from an unordered list of words
and then you will appreciate the way a dictionary is designed. In this
chapter we are going to discuss different types of searching and sorting
methods. Let us start with searching methods.

Searching
Searching is an operation that finds the location of a given element in a list.
The search is said to be successful or unsuccessful depending on whether
the element that is to be searched is found or not. Here, we will discuss two
standard searching methods—Linear search and Binary search.

Linear Search
This is the simplest method of searching. In this method, an element is
searched in the list sequentially. This method can be applied to a sorted or
an unsorted list. Searching in unsorted list starts from the 0th element and
continues until the element is found or the end of list is reached. As against
this, searching in an ascending order sorted list starts from 0th element and
continues until the element is found or an element whose value is greater
than the value being searched is reached.

Following program implements linear search method for an unsorted as
well as a sorted array.

Honest Solid Code

Program 9-1. Implementation of Linear Search algorithm

#include <iostream>
using namespace std;

int searchinsorted (int [], int, int);



int searchinunsorted (int [], int, int);

int main()
{

int unsortedarr[10] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };
int sortedarr[10] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };
int num, pos;

cout << “Enter number to search: ”;
cin >> num;
pos = searchinunsorted (unsortedarr, 10, num);
if (pos == -1)

cout << “Number is not present in the array” << endl;
else

cout << “Number is at position ” << pos << “ in array” << endl;

printf (“Enter number to search: ”);
cin >> num;
pos = searchinunsorted (sortedarr, 10, num);
if (pos == -1)

cout << “Number is not present in the array” << endl;
else

cout << “Number is at position ” << pos << “ in array” << endl;

return 0;
}

int searchinunsorted (int arr[], int size, int num)
{

int i;

for (i = 0; i < size; i++)
{

if (arr[i] == num)
return i;

}

return -1;
}

int searchinsorted (int arr[], int size, int num)



{
int i;

if (num > arr[size - 1])
return -1;

for (i = 0; i < size; i++)
{

if (arr[i] > num)
return -1;

if (arr[i] == num)
return i;

}
return -1;

}

Output:

Enter number to search: 13
Number is at position 3 in the array
Enter number to search: 100
Number is not present in the array

In the program, num is the number that is to be searched in the array. While
searching in unsortedarr, inside the for loop each time arr[i] is compared
with num. If any element is equal to num, it means that the element is
found. Hence its position in the array is returned. If control reaches beyond
the for loop, it means that the element is not present in the array. In this
case -1 is returned. We have returned -1, because no element can be present
at position -1 in the array.

While searching in a sorted array, search starts at the 0th element and ends
when the element is found or any element of the list is found to be greater
than the element to be searched.

The number of comparisons in case of sorted list might be less as compared
to the unsorted list because the search may not always continue till the end
of the list.

The performance of linear search algorithm can be measured by counting
the number of comparisons done to locate an element. In the worst case, in



an array of size n, this algorithm would carry out n comparisons to reach a
conclusion whether the element being searched is present in the array or
not. Hence worst case time complexity of this algorithm is O (n).

Binary Search
Binary search method is very fast and efficient. This method requires that
the list of elements be in sorted order. In this method, to search an element
we compare it with the element present at the center of the list. If it matches
then the search is successful. Otherwise, the list is divided into two halves
—one from 0th element to the center element (first half), and another from
center element to the last element (second half). As a result, all the elements
in first half are smaller than the center element, whereas, all the elements in
second half are greater than the center element.

The searching will now proceed in first or second half depending upon
whether the element is smaller or greater than the center element. Same
process of comparing the required element with the center element and if
not found then dividing the elements into two halves is repeated for the first
half or second half. This procedure is repeated till the element is found or
the division of half parts gives one element. Let us understand this with the
help of Figure 9-1.

Figure 9-1. Binary search.

Suppose an array consists of 10 sorted numbers and 57 is element that is to
be searched. The binary search method when applied to this array works as
follows:



(a) 57 is compared with the element present at the center of the list (i.e., 11).
Since 57 is greater than 11, the searching is restricted only to the second
half of the array.

(b) Now 57 is compared with the center element of the second half of array
(i.e., 25). Here again 57 is greater than 25 so the searching now
proceeds in the elements present between 25 and 90.

(c) This process is repeated till 57 is found or no further division of sub-
array is possible.

Following program implements the binary search algorithm.

Honest Solid Code

Program 9-2. Implementation of Binary Search algorithm

#include <iostream>
using namespace std;

int binarysearch (int [], int, int);

int main()
{

int arr[] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };
int num, pos;

cout << “Enter number to search: ”;
cin >> num;
pos = binarysearch (arr, 10, num);
if (pos == -1)

cout << “Number is not present in the array” << endl;
else

cout << “Number is at position ” << pos << “ in array” << endl;

return 0;
}

int binarysearch (int a[], int size, int num)



{
int lower, upper, mid;

lower = 0;
upper = size;

while (lower <= upper)
{

mid = (lower + upper) / 2;
if (num == a[mid])

return mid;
if (num > a[mid])

lower = mid + 1;
if (num < a[mid])
upper = mid - 1;

}

return -1;
}

Output:
Enter number to search: 57
Number is at position 8 in the array

In 1st iteration the algorithm works with n elements In

2nd iteration it works with n / 2 elements

In 3rd iteration it works with (n / 2) / 2 elements

In 4th iteration it works with ((n / 2) / 2) / 2 elements

This goes on till we reach an iteration where number of elements being
worked upon becomes 1. Suppose k iterations would be required to reach
input size of 1. Thus,
n / 2k = 1
Taking log of both sides we get,
log2 2k = log2 n

Therefore, k = log2 n.



During each iteration maximum of 3 comparisons are done. Thus number of
comparisons in binary search is limited to 3 * log2 n. Ignoring the constant
3, the time complexity will be O (log2 n).

Thus, a binary search gives better performance than linear search. The
disadvantage of binary search is that it works only on sorted lists. So, if
searching is to be performed on an unsorted list then linear search is the
only option.

Recursive Binary Search
We have used a while loop to implement the binary search algorithm in
Program 9-2. It is also possible to implement this algorithm using recursion.
This recursive implementation is given below.

Honest Solid Code

Program 9-3. Implementation of Recursive Binary Search algorithm

#include <iostream>
using namespace std;

int recbinsearch (int [], int, int, int);

int main()
{

int arr[] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };
int num, pos;

cout << “Enter number to search: ”;
cin >> num;
pos = recbinsearch (arr, num, 0, 10);
if (pos == -1)

cout << “Number is not present in the array” << endl;
else

cout << “Number is at position ” << pos << “ in array” << endl;



return 0;
}

int recbinsearch (int a[], int num, int lower, int upper)
{

int mid;
if (lower <= upper)
{

mid = (lower + upper) / 2;
if (num == a[mid])

return mid;
if (num > a[mid])

lower = mid + 1;
if (num < a[mid])

upper = mid - 1;

return recbinsearch (a, num, lower, upper);
}

return -1;
}

In recbinsearch() we compare num with the middle element. If it matches
with middle element, we return the index mid. Otherwise if num is found to
be greater than the mid element, then num can only lie in right half
subarray after the mid element. So we call recbinsearch() for right half of
the array. Finally, if num is found to be smaller than the mid element, then
num can only lie in left half subarray before the mid element. So we call
recbinsearch() for left half of the array.

To find time complexity of recursive binary search algorithm, let us
consider 3 cases shown in Figure 9-2.



Figure 9-2. Progress of recursive Binary search.

In case (a) it takes 3 comparisons to search 57. In case (b) it takes 2
comparisons to search 25. Lastly, in case (c), it takes 4 comparisons to
reach a conclusion that 100 in not present in the array. So, we can conclude
that, in worst case, it does log2 n comparisons. Note that value of log2 10 is
between 3 and 4. To get exact number of comparisons the input array size
must be a power of 2. We can safely conclude that that the time complexity
of recursive binary search algorithm is O (log2 n).

Sorting
Sorting refers to arranging elements of a set in some order. There are
different methods that are used to sort the data in ascending or descending



order. These methods can be divided into two categories. They are as
follows:

Internal Sorting
If all the data to be sorted can be accommodated at a time in memory, then
internal sorting methods are used.

External Sorting
When the data to be sorted is so large that some of the data is present in the
memory and some is kept in auxiliary memory (hard disk, tape, etc.), then
external sorting methods are used. Let us begin with internal sorting
methods.

Internal Sorting
There are different types of internal sorting algorithms. We will discuss the
common algorithms here. These algorithms sort the data is ascending order.
With a minor change we can also sort the data in descending order.

Bubble Sort
In this method, firstly 0th and 1st elements are compared. If 0th element is
found to be greater than the 1st element then they are interchanged. Next,
the 1st element is compared with the 2nd element, if it is found to be greater,
then they are interchanged. In the same way all the adjacent pairs of
elements are compared and interchanged if required. At the end of this
iteration the largest element gets placed at the last position.

Similarly, in the second iteration the comparisons are made till the last but
one element and this time the second largest element gets placed at the
second last position in the list.

Once all such iterations are completed the list becomes a sorted list. This
can be easily understood with the help of Figure 9-3.



Figure 9-3. Bubble sort at work.

Suppose an array arr consists of 5 numbers. The bubble sort algorithm
works as follows:

(a) In the first iteration the 0th element 25 is compared with 1st element 17
and since 25 is greater than 17, they are interchanged.

(b) Now the 1st element 25 is compared with 2nd element 31. But 25 is less
than 31, so are not interchanged.



(c) This process is repeated until (n - 2)nd element is compared with (n - 1)th

element and interchanged if required.

(d) At the end of the first iteration, the (n - 1)th element holds the largest
number.

(e) Now the second iteration starts with the 0th element 17. The above
process of comparison and interchanging is repeated but this time the
last comparison is made between (n - 3)rd and (n - 2)nd elements.

(f) If there are n elements in the array then (n - 1) iterations need to be
performed.

The following program implements the bubble sort algorithm.

Honest Solid Code

Program 9-4. Implementation of Bubble Sort algorithm

#include <iostream>
using namespace std;

void bubblesort (int [], int);

int main()
{

int arr[] = { 25, 17, 31, 13, 2 };
int i;

cout << “Bubble sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;

bubblesort (arr, 5);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;



return 0;
}

void bubblesort (int a[], int size)
{

int i, j, temp;

for (i = 0; i < size - 1; i++)
{

for (j = 0; j < size - i - 1; j++)
{

if (a[j] > a[j + 1])
{

temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;

}
}

}
}

Output:

Bubble sort
Array before sorting:
25    17    31    13    2
Array after sorting:
2    13    17    25    31

The elements compared in bubble sort are always adjacent. Hence each
time the elements compared are a[j] and a[j + 1]. If the element a[j] is
found to be greater than a[j + 1] then they are interchanged.

If we wish to arrange the numbers in descending order then we need to
make a small change in the condition, as shown below:

if (a[j] < a[j + 1])
{

/* exchange a[j] with a[j + 1] */
}



When the array has 5 elements the number of comparisons that would be
made in each iteration would be as follows:

1st iteration - 4 comparisons
2nd iteration - 3 comparisons
3rd iteration - 2 comparisons
4th iteration - 1 comparison

So, in general, for an array of n elements the number of comparisons will
be n (n - 1) / 2. So time complexity of selection sort algorithm is O (n2).

Selection Sort
This is perhaps the simplest method of sorting. In this method, to sort the
data in ascending order, the 0th element is compared with all other elements.
If the 0th element is found to be greater than the compared element then
they are interchanged. So after the first iteration the smallest element gets
placed at the 0th position. The same procedure is repeated for the 1st

element and so on. This procedure can be best understood with the help of
Figure 9-4.



Figure 9-4. Selection sort at work.

Suppose an array arr consists of 5 numbers. The selection sort algorithm
works as follows:

(a) In the first iteration the 0th element 25 is compared with 1st element 17
and since 25 is greater than 17, they are interchanged.

(d) Now the 0th element 17 is compared with 2nd element 31. But 17 is less
than 31, so are not interchanged.



(e) This process is repeated till 0th element is compared with rest of the
elements and interchanged if necessary.

(f) At the end of the first iteration, the 0th element is the smallest element.

(g) Now the second iteration starts with the 1st element 25. The above
process of comparison and swapping is repeated.

(h) So if there are n elements in the array, then after (n - 1) iterations the
array is sorted.

The following program sorts the given list using selection sort algorithm.

Honest Solid Code

Program 9-5. Implementation of Selection Sort algorithm

#include <iostream>
using namespace std;

void selectionsort (int [], int);

int main()
{

int arr[] = { 25, 17, 31, 13, 2 };
int i;

cout << “Selection sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;

selectionsort (arr, 5);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;

return 0;



}

void selectionsort (int a[], int size)
{

int i, j, temp;

for (i = 0; i < size - 1; i++)
{

for (j = i + 1; j < size; j++)
{

if (a[i] > a[j])
{

temp = a[i];
a[i] = a[j];
a[j] = temp;

}
}

}
}

Output:

Selection sort
Array before sorting:
25    17    31    13    2
Array after sorting:
2    13    17    25    31

Here, a[i] is compared with a[j]. If the element a[i] is found to be greater
than a[j] then they are interchanged. The value of j is starting from i + 1, as
we need to compare any element with all elements following it.

When the array has 5 elements the number of comparisons made in each
iteration will be as follows:

1st iteration - 4 comparisons
2nd iteration - 3 comparisons
3rd iteration - 2 comparisons
4th iteration - 1 comparison



So, in general, for an array of n elements the number of comparisons will
be n (n - 1) / 2. So time complexity of selection sort algorithm is O (n2).

Insertion Sort
This algorithm works by inserting each element at an appropriate position
in the array. The array is divided into two sets—one contains sorted values
and another contains unsorted values. To begin with, the element at 0th

position is in the sorted set and the rest are in the unsorted set. During each
iteration, the first element in the unsorted set is picked up and inserted at the
correct position in the sorted set. The correct position is determined by
traversing the sorted set from right to left and comparing the picked element
with the elements in the sorted set. During comparison if it is found that
picked element can be inserted then space is created for it by shifting the
other elements one position to the right. Let us understand this algorithm
with the help of Figure 9-5.



Figure 9-5. Insertion sort at work.

Given below is the explanation of insertion sort algorithm for an array of 5
elements shown in Figure 9-5:

(a) In the first iteration the 1st element 17 is compared with the 0th element
25. Since 17 is smaller than 25, 17 is inserted at 0th place. Before that
the 0th element 25 is shifted one position to the right.

(b) In the second iteration, the 2nd element 31 is compared with element
before it, i.e., 25. Since 31 is greater than 25, nothing is done as 31 is at
its correct position.



(c) In the third iteration, the 3rd element 13 is compared successively with
31, 25, and 17. Since, 13 is smaller than all of them, they are shifted to
right by one position and then 13 is inserted.

(d) In the fourth iteration the 4th element 2 is compared with elements 31,
25, 17 and 13. Since, 2 is smaller than all of them, these elements are
shifted to right by one position and then 2 is inserted.

At the end of 4th iteration, the array becomes a sorted array. The following
program implements the insertion sort algorithm:

Honest Solid Code

Program 9-6. Implementation of Insertion Sort algorithm

#include <iostream>
using namespace std;

void insertionsort (int [], int);

int main()
{

int arr[] = { 25, 17, 31, 13, 2 };
int i;

cout << “Insertion sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;

insertionsort (arr, 5);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 5; i++)

cout << arr[i] << “\t”;
return 0;

}



void insertionsort (int a[], int size)
{

int i, j, k, temp;

for (i = 1; i < size; i++)
{

temp = a[i];
j = i - 1;
while (j >= 0 && a[j] > temp)
{

a[j + 1] = a[j];
j–;

}

a[j + 1] = temp;
}

}

Output:

Insertion sort
Array before sorting:
25    17    31    13    2
Array after sorting:
2    13    17    25    31

In the program the outer for loop is starting from 1 as the unsorted set starts
at 1st position. The inner loop is used for comparison to decide the position
where the picked element (temp) and for shifting the elements one position
to the right to make room for inserting the picked element.

Let us consider best case and worst case for analyzing the time complexity
of this algorithm. The best case is when the array is already sorted and the
worst case is when the array elements are in descending order. The
important operations to be considered in this algorithm are comparison to
determine where the element should be inserted and movement to create
space for inserting the element.

In the best case the number of comparisons and movements will be as
shown below.



for i = 1, 1 comparison + 0 movement = 1
for i = 2, 1 comparison + 0 movement = 1
for i = 3, 1 comparison + 0 movement = 1
for i = 4, 1 comparison + 0 movement = 1
…
…
for i = n, 1 comparison + 0 movement = 1
So total number of operations will be 1 + 1 + 1 + 1…. This sum will be
equal to n. Thus time complexity in best case will be O (n).

In the worst case the number of comparisons and movements will be as
shown below.

for i = 2, 1 comparison + 1 movement = 2
for i = 3, 2 comparisons + 2 movements = 4
for i = 3, 3 comparisons + 3 movements = 6
for i = 4, 3 comparisons + 3 movements = 8
for i = n, n - 1 comparisons + n - 1 movements= 2(n - 1)

If we add all this, we get
2 + 4 + 6 + 8 + … + 2 (n - 1)
= 2 (1 + 2 + 3 + + 4… + (n -1))
= 2 (n (n -1) / 2)
= O (n2)

Thus time complexity in best case will be O (n2).

Quick Sort
Quick sort is a very popular sorting method. It is also known as partition
exchange sort. The basis of this algorithm is that it is faster and easier to
sort two small arrays than one large array. Thus, the basic strategy of quick
sort is to divide and conquer.

Consider a stack of papers each bearing name of a student and we wish to
sort them by name. We can use the following approach. Pick a splitting
value, say L (known as pivot element) and divide the stack of papers into
two piles, A-L and M-Z (note that each pile may not contain the same
number of papers). Then take the first pile and sub-divide it into two piles,



A-F and G-L. The A-F pile can be further broken down into A-C and D-F.
This division process goes on until the piles are small enough to be easily
sorted. The same process is applied to the M-Z pile.

Eventually, all the small sorted piles can be stacked one on top of the other
to produce an ordered set of papers.

This strategy is based on recursion—on each attempt to sort the stack of
papers, the pile is divided and then the same approach is used to sort each
smaller pile (a smaller case).

The quick sort algorithm can be explained with the help of Figure 9-6. In
this figure the element marked by ‘*’ is the pivot element and the element
marked by ‘—’ is the element whose position is finalized.



Figure 9-6. Quick sort.

The array in Figure 9-6 consists of 10 elements. The quick sort algorithm
works as follows:

(a) In the first iteration, we take the 0th element, i.e., 11, as a pivot element
and place it at its final position such that all elements to the left of it are
less than 11 and all elements to the right of it are greater than 11. To
divide the array in this way we use two index variables, p and q.

(b) Using index variable p we move in the array from left to right in search
of an element greater than 11. In our case p is incremented till we reach



13.

(c) Similarly, using q we move in the array from right to left in search of an
element smaller than 11. In our case q is not decremented even once
because 3 is less than 11.

(d) Now 13 and 3 are interchanged. Again, from their current positions p
and q are incremented and decremented respectively and exchanges are
made appropriately if desired.

(e) The process ends when p exceeds q. In our case, this happens when p
reaches 25 and q reaches 1.

(f) Now, the 0th element 11 is interchanged with the value at index q, i.e., 1.

(g) The array is thus divided into two sub-arrays—elements to the left of 11
and elements to the right of 11, with 11 at its final position.

(h) Now the same procedure is applied to the two sub-arrays and then to the
sub-arrays of these sub-arrays. As a result, at the end when all sub-
arrays contain only one element, the original array gets sorted.

Note that it is not necessary that the pivot element must be the 0th element.
We can choose any other element as pivot. The program given below
implements the quick sort algorithm.

Honest Solid Code

Program 9-7. Implementation of Quick Sort algorithm

#include <iostream>
using namespace std;

void quicksort (int [], int, int);
int split (int [], int, int);

int main()
{

int arr[] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };



int i;

cout << “Quick sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

quicksort (arr, 0, 9);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;
return 0;

}

void quicksort (int a[], int lower, int upper)
{

int i;

if (upper > lower)
{

i = split (a, lower, upper);
quicksort (a, lower, i - 1);
quicksort (a, i + 1, upper);

}
}

int split (int a[], int lower, int upper)
{

int p, q, num, temp;

p = lower + 1;
q = upper;
num = a[lower];

while (q >= p)
{

while (a[p] < num)
p++;

while (a[q] > num)
q–;



if (q > p)
{

temp = a[p];
a[p] = a[q];
a[q] = temp;

}
}

temp = a[lower];
a[lower] = a[q];
a[q] = temp;

return q;
}

Output:

Quick sort
Array before sorting:
11    2    9    13    57    25    17    1    90    3
Array after sorting:
1    2    3    9    11    13    17    25    57    90

The first and last indexes passed to quicksort() reflect the part of the array
that is being currently processed. In the first call we pass 0 and 9, since
there are 10 integers in our array.

In the function quicksort(), a condition is checked whether upper is greater
than lower. If the condition is satisfied then only the array will be split into
two parts, otherwise, the control will simply be returned. To split the array
into two parts the function split() is called.

In the function split(), to start with the two variables p and q are assigned
the values lower + 1 and upper. Then a while loop is executed that checks
whether the indexes p and q have crossed each other. If they haven’t then
inside the while loop two more nested while loops are executed to increase
the index p and decrease the index q. Then it is checked whether q is
greater than p. If so, then the elements present at pth and qth positions are
interchanged.



Finally, when the control returns to the function quicksort() two recursive
calls are made to function quicksort(). This is done to sort the two split
sub-arrays. As a result, after all the recursive calls when the control reaches
the function main() the arrays becomes sorted.

In quick sort we choose a pivot and then split the array into sub-arrays.
Then we again choose a pivot element in each of these sub-arrays and
further split them. The best case in quick sort would be when we always
choose the middle element of the array as the pivot element. Suppose to
reach a sub-array of 1 element we have to do k iterations.

Then, n / 2k = 1.

Taking log of both sides we get,
log2 2k = log2 n

Therefore, k = log2 n.

In each of these k iterations for splitting the array we have to do n
comparisons. Hence the total number of comparisons in quick sort will be n
* log2 n. So time complexity of quick sort in best case is O (log2 n).

The worst case in quick sort will occur when the input is an array which is
already sorted. In this case if we take the first element as pivot then there
won’t be any left sub-array. Except the pivot, all elements will be in right
sub-array. Same thing will happen at each level. So, while splitting there
will be n comparisons at level 1, n - 1 comparison at level 2, n - 3
comparisons at level 3, etc. So totally there will be n * (n + 1) / 2
comparisons. So time complexity will be O (n2).

Binary Tree Sort
Binary tree sort uses a binary search tree (BST). In this algorithm, each
element in the input list is inserted in a BST. During insertion the element
being inserted is compared with nodes in the BST starting with the root
node and moving towards the leaf nodes. If the element is less than node,
then it is placed in the left branch, otherwise in the right branch. After all
elements are inserted in the BST, it is traversed in in-order (left, root, right)
to get the elements in ascending order.



Let’s understand this in more details. Suppose arr is an array that consists
of 10 distinct elements. The elements are as follows:

11, 2, 9, 13, 57, 25, 17, 1, 90, 3

The BST that can be built from these elements is shown in Figure 9-7.

Figure 9-7. Binary Tree sort at work.

The binary tree sort algorithm works as follows:

(a) To construct the binary search tree, we start with the 0th element 11. It is
made the root of the tree.

(b) While inserting the 1st element, i.e., 2, 2 is compared with the root node
11. Since 2 is less than 11 it is made the left child of the root node 11.

(c) While inserting the 2nd element of the list, i.e., 13, it is compared with
the root element 11. Since 13 is greater than 11 it is made the right child
of the root node 11.

(d) Similarly, all other elements are placed in their proper position in the
binary search tree.

(e) Now to get the elements in the sorted order, the tree is traversed in in-
order and the elements are restored in the array.

The following program implements the binary tree sort algorithm.



Honest Solid Code

Program 9-8. Implementation of Binary Tree Sort algorithm

#include <iostream>
using namespace std;

struct btreenode
{

struct btreenode *leftchild;
int data;
struct btreenode *rightchild;

};

void binarytreesort (int [], int);
void insert (struct btreenode **, int);
void inorder (struct btreenode *, int [], int *);

int main()
{

int arr[] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };
int i;

cout << “Binary tree sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

binarytreesort (arr, 10);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

return 0;
}

void binarytreesort (int a[], int size)



{
struct btreenode *bt;
int i;

bt = NULL;
for (i = 0; i < size; i++)

insert (&bt, a[i]);

i = 0;
inorder (bt, a, &i);

}

void insert (struct btreenode **pr, int num)
{

if (*pr == NULL)
{

*pr = (struct btreenode *) malloc (sizeof (struct btreenode));

(*pr)->leftchild = NULL;
(*pr)->data = num;
(*pr)->rightchild = NULL;

}
else
{

if (num < (*pr)->data)
insert (&((*pr)->leftchild), num);

else
insert (&((*pr)->rightchild), num);

}
}

void inorder (struct btreenode *pr, int a[], int *p)
{

if (pr != NULL)
{

inorder (pr->leftchild, a, p);
a[*p] = pr->data;
*p = *p + 1;
inorder (pr->rightchild, a, p);



}
}

Output:

Binary Tree sort
Array before sorting:
11    2    9    13    57    25    17    1    90    3
Array after sorting:
1    2    3    9    11    13    17    25    57    90

The binarytreesort() function calls insert() function for each element in
the array to construct the BST, and inorder() function to visit the
constructed BST in in-order fashion.

In the insert() function it is ascertained whether BST is empty or not. If it is
empty then a new node is created and the data to be inserted is stored in it.
The left and right child of this new node is set with a NULL value, as this is
the first node being inserted.

If BST is not empty then the current node is compared with the data to be
inserted and insert() function is called recursively to insert the node in the
left/right sub-tree. Thus insert() continues to move down the levels of BST
until it reaches a leaf node. When it does, the new node gets inserted in the
left/right sub-tree.

The inorder() function receives address of the root node of BST, address of
the array and an index where each visited element of BST should be
inserted in the array. In the function a condition is checked whether the
pointer is NULL. If the pointer is not NULL then a recursive call is made
first for the left child and then for the right child. The values passed are the
address of the left and right children that are present in the pointers
leftchild and rightchild respectively. In between these two calls the data of
the current node is stored in the array.

In binary tree sort there are two distinct steps—creation of BST and visiting
it in in-order. The worst case will be if the array is already in sorted order.
Let us discuss the time complexity in this case.

While constructing the BST, to insert 1st element of this array into BST we
have to perform 1 comparison, to insert 2nd element we have to do 2



comparsions, to insert 3rd element we have to do 3 comparisons. So to
insert n elements it has to do n (n + 1) / 2 comparisons.

If there are n elements in the list there will be n nodes in the BST. While
performing in-order traversal of the BST we perform maximum of 3
comparisons for any node. For n nodes the maximum number of
comparisons will be 3n.

So, total number of comparisons for this algorithm will be n (n + 1) / 2 + 3
n. Ignoring constants and lower order terms, time complexity of binary tree
sort will be O (n2).

The drawback of the binary tree sort is that additional space is required for
building the BST.

Merge Sort
Like Quick sort, Merge sort is also a recursive algorithm. It goes on
splitting the array into sub-arrays till we get sub-arrays of size 1. Then it
compares elements of 1-element sub-arrays to merge them into a 2-element
sorted array. Then it merges two such 2-element sorted sub-arrays to build a
4-element sorted sub-array. This process continues up the ladder till we get
a complete sorted array.

This merging process for two 5-element sorted sub-arrays is shown in
Figure 9-8. In the first step elements 2 and 1 are compared. Of these, 1 is
smaller. Hence it is transferred to the sorted array. Then 2 and 3 are
compared, and so on. I think you get the picture now.

Note that, if during comparison end of one of the sub-arrays is reached, then
the remaining elements from the other sub-array are copied into the third
list.



Figure 9-8. Merge sort at work.

The following program implements the merge sort algorithm.

Honest Solid Code

Program 9-9. Implementation of Merge Sort algorithm

#include <iostream>
using namespace std;

void mergesort (int [], int, int);



void merge (int [], int, int, int);

int main()
{

int arr[] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };
int i;

cout << “Merge sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

mergesort (arr, 0, 9);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

return 0;
}

void mergesort (int a[], int lower, int upper)
{

int mid;

if (lower < upper)
{

mid = (lower + upper) / 2;
mergesort (a, lower, mid);
mergesort (a, mid + 1, upper);
merge (a, lower, mid, upper);

}
}

void merge (int a[], int lower, int mid, int upper)
{

int size, *b, first, second, idx, i;

size = upper - lower + 1;
b = (int *) malloc (size * sizeof (int));

first = lower;



second = mid + 1;
idx = 0;

while (first <= mid && second <= upper)
{

if (a[first] <= a[second])
{

b[idx] = a[first];
first++; idx++;

}
else
{

b[idx] = a[second];
second++; idx++;

}
}

while (first <= mid)
{

b[idx] = a[first];
idx++; first++;

}

while (second <= upper)
{

b[idx] = a[second];
idx++; second++;

}

idx = 0;
for (i = lower; i <= upper; i++)
{

a[i] = b[idx];
idx++;

}

delete b;
}

Output:



Merge sort
Array before sorting:
11    2    9    13    57    25    17    1    90    3
Array after sorting:
1    2    3    9    11    13    17    25    57    90

The logic of merge() function is similar to the polynomial addition logic
discussed in Chapter 2. The two sub-arrays being merged are part of the
original array arr[]. They are identified as two separate sub-arrays using
lower, mid and upper. The first sub-array is from index lower to mid, and
the second from mid + 1 to upper. For the purpose of merging another
array b[] is created dynamically. Once array b[] contains the sorted
elements, they are copied back into original array arr[] and the memory
occupied by b[] is freed.

Suppose arr[] is an 8-element array. At level 1 we will split it into sub-
arrays—arr[0] to arr[3] and arr[4] to arr[7]. At the next level, we will
split the first sub-array into two sub-sub-arrays—one from arr[0] to arr[1]
and second from arr[2] to arr[3]. So how many levels would we have if we
are to reach 1-element sub-arrays? Well, it would be log2 8, or in general
log2 n. At each level we are doing n comparisons for merging. So time
complexity of merge sort algorithm would be O (n log2 n).

Heap Sort
In this algorithm a binary heap is used. Recall from Chapter 7 that all levels
of a binary heap are completely filled except perhaps last and at the last
level nodes are as much to left as possible. In a max-heap the value at the
root of any sub-tree is greater than or equal to the value of either of its sub-
trees.

Heap sort is an improvement over the binary tree sort. Unlike a binary tree
sort, it does not create a new binary tree from the input list.

Instead, it builds a heap by adjusting the position of elements within the
array itself. Thus, it sorts the array in-place, without needing any extra
space.

Given below are the steps involved in the heap sort algorithm.



(a) Build a max heap of array elements

(b) Swap Root element with last array element

(c) Build max heap excluding last element

(d) Decrease heap length by 1

(e) Repeat steps (b), (c), (d) until array gets sorted

Let us now understand this procedure with the help of an example. Suppose
an array contains elements 11, 2, 9, 13, 57, 25, 17, 1, 90, and 3. A binary
heap representation of this array is shown in Figure 9-8. To convert this
binary heap into a max-heap we need to repeatedly heapify the nodes in it.
While heapifying a node in a max heap, we need to ensure that all its
children satisfy the heap property—Parent >= Left child, Right child. This
operation involves following steps:

(a) Pick maximum out of given node, and its left and right child
(b) If maximum is root, do nothing
(c) If maximum is left, exchange root with left and heapify left node
(d) If maximum is right, exchange root with right and heapify right node

These operations are shown in Figure 9-9.

Figure 9-9. Heapify operation.



Note that in the binary tree shown in Figure 9-9 node 13 and node 9 are
violating the heap property, so we need to heapify them. While heapifying
13, maximum out of 13, 1, and 90 is 90. Since 90 is the right child, it is
exchanged with 13. As against this, while heapifying 9, maximum (25)
turns out to be the left child. So, 25 is exchanged with 9. Since after
exchange 13 and 9 became child nodes, we did not have to heapify them
further.

The following program implements the heap sort algorithm:

Honest Solid Code

Program 9-10. Implementation of Heap Sort algorithm

#include <iostream>
using namespace std;

void heapsort (int [], int);
void heapify (int [], int, int);

int main()
{

int arr[] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };
int i;

cout << “Heap sort” << endl;
cout << “Array before sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

heapsort (arr, 10);

cout << endl << “Array after sorting:” << endl;
for (i = 0; i < 10; i++)

cout << arr[i] << “\t”;

return 0;
}



void heapsort (int a[], int n)
{

int i, t;

/* create max heap */
for (i = n / 2 - 1; i >= 0; i–)

heapify (a, n, i);

for (i = n - 1; i >= 0; i–)
{

/* move current root to end */
t = a[0];
a[0] = a[i];
a[i] = t;

/* heapify the reduced heap */
heapify (a, i, 0);

}
}

void heapify (int a[], int sz, int i)
{

int largest, lch, rch, t;

lch = 2 * i + 1;
rch = 2 * i + 2;

if (lch >= sz)
return;

largest = i;

/* if left child is larger than root */
if (lch < sz && a[lch] > a[largest])

largest = lch;

/* if right child is larger than largest so far */
if (rch < sz && a[rch] > a[largest])

largest = rch;

/* if largest is not root */
if (largest != i)



{
t = a[ i ] ;
a[i] = a[largest];
a[largest] = t;

/* heapify the affected sub-tree */
heapify (a, sz, largest);

}
}

Output:

Heap sort
Array before sorting:
11    2    9    13    57    25    17    1    90    3
Array after sorting:
1    2    3    9    11    13    17    25    57    90

The program begins by declaring an array that represents the binary tree.
We know that in array representation of a binary tree, a node at location i
has its left and right child at locations (2i + 1) and (2i + 2) respectively.

Next, in the heapsort() function in a for loop we have repeatedly called
heapify() moving level by level from leaf towards root, and at any level
from right to left, starting from node at location size / 2 - 1. The heapify()
function finds the largest out of given node, and its left and right child. If
the given node turns out to be largest then it does nothing. But if left/right
child turns out to be largest it exchanges the given node with left/right child
and then proceeds to heapify the left/right child.

Note that in the program we do not physically construct this binary tree by
establishing the link between the nodes. Instead, we imagine this tree and
then readjust the array elements to form a heap.

Once the max-heap is created the current root node is moved to the end and
heapify() is called once again to heapify the reduced heap.

Let us now analyze the time complexity of heap sort algorithm. For this we
must first consider the time complexity of heapify() function. In the worst
case, while heapifying a value it does log2 n comparisons. This is equal to
the height of a complete binary tree. Since we are calling this function n



times in heapsort(), the time complexity of heap sort algorithm will be O
(n log2 n).

Chapter Bullets

Summary of chapter

(a) Searching an element in a list can be done using linear search or binary
search algorithm.

(b) Binary search algorithm is more efficient than linear search algorithm.

(c) Binary search algorithm expects the elements of a list in ascending
order.

(d) Binary search can be done iteratively or recursively.

(e) Internal sorting is used when the input data can be accommodated in
memory.

(f) External sorting is used when data is so huge that all of it cannot be
stored in memory at a time.

(g) Common internal sorting algorithms include bubble sort, selection sort,
insertion sort, quick sort, merge sort, binary tree sort and heap sort.

Check Your Progress

Exercise - Level I

[A] State whether the following statements are True or False:

(a) Sorting is the method of arranging a list of elements in a particular order.

(b) Linear search is more efficient than the binary search.



(c) Merge sort needs additional space to sort an array.

(d) Binary tree sort needs additional space to sort an array.

(e) Time complexity of Quick sort is O (n log2 n).

(f) Insertion sort is more efficient than Heap sort.

Sharpen Your Skills

Exercise - Level II

[B] Answer the Following:

(a) What is the difference between an internal sorting and external sorting?

(b) Write a program that determines the first occurrence of a given sub-
array within it.

Coding Interview Questions

Exercise Level III

[C] Answer the Following:

(a) Suppose an array contains n elements. Given a number x that may occur
several times in the array. Find

- the number of occurrences of x in the array
- the position of first occurrence of x in the array.

(b) Write a program that implements insertion sort algorithm for a linked
list of integers.

(c) Write a program that sorts the elements of a two-dimensional array row
wise / column wise.



Case Scenario Exercise

External Sorting

External sorting is useful for sorting huge amount of data that cannot be
accommodated in the memory all at a time. So, data from the disk is loaded
into memory part by part and each part that is loaded is sorted and the
sorted data is stored into some intermediate file. Finally, all the sorted parts
present in different intermediate files are merged into one single file.

Initially the original file (file number 1) is partitioned into two files (file
number 2 and 3). Then one item is read from each file (file number 2 and 3)
and the two items are written in sorted order in a new file (file number 4).
Once again one item is read from each partitioned files (file number 2 and
3) and these two items are written in sorted order in another new file (file
number 5). Thus, alternate pair of sorted items are stored in the file number
4 and 5. This procedure is repeated till the partitioned files (file number 2
and 3) come to an end.

Now following procedure is repeated twice:

(a) Read one item from file number 4 and 5 and write them in sorted order
in file number 2.

(b) Read one item from file number 4 and 5 and write them in sorted order
in file number 3.

Note that instead of creating two new files, the partitioned files (2 and 3)
are being reused.

After this the following procedure is repeated 4 times:

(a) Read one item from file number 2 and 3 and write them in sorted order
in file number 4.

(b) Read one item from file number 2 and 3 and write them in sorted order
in file number 5.



In this way alternately items are moved from a pair of partitioned files to
the pair of new files and from pair of new files to a pair of partitioned files.
This procedure is repeated till the time we do not end up writing entire data
in a single file. When this happens all the items in this file would be in
sorted order.

Write a program that implements the external sort algorithm.
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insertion, 187
searching, 189

Binary tree, 182
ancestor, 183
array representation, 185
linked list representation, 184
balanced, 209
complete, 184, 212
degree, 183
depth, 180
descendant, 183
height, 184
in-order traversal, 188
leaf, 183
level, 184
memory representation, 186



post-order traversal, 188
pre-order traversal, 188
reconstruction, 201
strictly, 184
threaded, 203

Binary tree sort, 273
Breadth frist search, 230
Brute Force algorithm, 19
Bubble sort, 258

C
Circular

queue, 171

D
Data structures

linear, 32
non-linear, 182, 222

Depth first search, 228
deque, 177

input-restricted, 177
output-restricted, 177

Dijkstra's algorithm, 239
Doubly linked list, 84

E
External sorting, 258
edge, 222

G
Graph

Dijkstra's algorithm, 239
Kruskal's algorithm, 236
Prim's algorithm, 237
adjacency list, 224
adjacency matrix, 223
breadth first search, 230
depth first search, 228
digraph, 222
directed, 222
edge, 222
shortest path algorithm, 239
spanning tree, 234
undirected, 222
vertex, 222



H
Heap, 212

construction, 213
max-heap, 213
min-heap, 213

Heap sort, 281

I
infix form, 137

to postfix form, 138
to prefix form, 50

Insertion sort, 253
Internal sorting, 258

K
Kruskal' algorithm, 236

L
Linear search, 250
Linked list, 58

doubly, 84
operations, 59, 75
recursive operations, 80
reversal, 70

M
Matrix, 35
Matrix operations

addition, 37
multiplication, 37
on sparse, 106
transpose, 106

Merge sort, 277

P
Polish notation, 138
postfix form, 137

evaluation, 151
to infix form, 150
to prefix form, 145
prefix form, 137

Polynomials, 43
addition, 43



multiplication, 47
Prim's algorithm, 237
priority queue, 178

Q
Queue

as array, 162
as linked list, 167
circular, 171
deque, 177
FIFO, 162
priority, 178

Quick sort, 268

S
Searching

tree, 189
binary search, 253
in BST, 189
in sorted list, 251
in unsorted list, 251
linear search, 250

Selection sort, 262
Shortest path algorithm, 239
Sorting, 258

binary tree, 273
bubble, 258
external, 258, 287
heap, 281
insertion, 265
internal, 259
merge, 277
quick, 268
selection, 262

Spanning tree, 234
breadth first, 235
depth first, 235
Kruskal's algorithm, 236
minimum cost, 235

Sparse matrix, 100
tuple, 102
as array, 101
as linked list, 123
diagonal, 125
lower triangular, 125
tridiagonal, 125
upper triangular, 125

Stack, 130



as array, 130
as linked list, 133
LIFO, 130
pop, 131
push, 131
top, 131

Stack operations
pop, 131
push, 131

T
Threaded binary tree, 203
Tree, 182

AVL tree, 209
binary search tree, 187
binary tree, 182

tree
deletion, 190
insertion, 187
traversal, 188
searching, 189



How to use the Downloadable DVD
Since these days most Laptops/PCs do not have a DVD drive, we haven’t
enclosed the DVD with this book. Instead, its contents have been made
available for download. They can be downloaded using the following link:

https://bit.ly/2VjEwiu

Download all the files when you visit this link.

Once downloaded, you can install the contents by double-clicking the file
CDStart.exe. Follow the instructions that will appear on the screen.

Once the installation is over, you can access the animations as well as the
sample programs.

https://bit.ly/2VjEwiu
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